Solving 1st order linear ODEs

- Given $y^{\prime}(x)+p(x) y(x)=q(x)$
- Find the integrating factor

$$
\mu(x)=e^{\int p(x) d x}
$$

- The solution follows from

$$
\mu(x) y(x)=\int \mu(x) q(x) d x
$$

(Don't forget your constant of integration!)

- Or, if you are given an initial condition...

$$
\mu(x) y(x)=\mu\left(x_{0}\right) y\left(x_{0}\right)+\int_{x_{0}}^{x} \mu(t) q(t) d t
$$

Suppose $p(x)$ and $q(x)$ are continuous on an interval (a, b) containing x_{0}. Then for any choice of initial value y_{0}, the linear IVP

$$
\frac{d y}{d x}+p(x) y=q(x), \quad y\left(x_{0}\right)=y_{0}
$$

has a unique solution on the entire interval (a, b).

A first order equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

where P and Q are continous on an interval and n is a real number, is called a Bernoulli equation.

Divide both sides of the equation by y^{n} and then make the substitution $u=y^{1-n}$. This will transform the Bernoulli equation into the linear equation

$$
\left(\frac{1}{1-n}\right) \frac{d u}{d x}+P(x) u=Q(x) .
$$

Also note that $y=0$ solves the original Bernoulli equation.

