The differential form $M(x, y) d x+N(x, y) d y$ is said to be exact on a rectangle R if it is the total differential of a function $F(x, y)$ on R. That is, $M(x, y) d x+N(x, y) d y$ is exact if

$$
M(x, y)=\frac{\partial F}{\partial x} \quad N(x, y)=\frac{\partial F}{\partial y}
$$

for some function $F(x, y)$ on R.

If $M(x, y) d x+N(x, y) d y$ is an exact differential form, then the differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is called an exact equation.

Test for exactness

Suppose the first partial derivatives of $M(x, y)$ and $N(x, y)$ are continuous in a rectangle R. Then

$$
M(x, y) d x+N(x, y) d y=0
$$

is an exact differential equation if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

for all (x, y) in R.

