On the interval $(a, b)$, suppose that $y_{p}(x)$ is a particular solution of

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=g(x)
$$

and that $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of the corresponding homogeneous equation. Then every solution of

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=g(x)
$$

has the form

$$
y(x)=y_{p}(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

On the interval $(a, b)$, suppose that $y_{p_{1}}(x)$ is a solution of

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=g_{1}(x)
$$

and $y_{p_{2}}(x)$ is a solution of

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=g_{2}(x)
$$

Then $y(x)=K y_{p_{1}}(x)+M y_{p_{2}}(x)$ is a solution of
$y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=K g_{1}(x)+M g_{2}(x)$.

This is called the superposition principle.

