Finding an Antiderivative through a Given Point

There are two popular approaches to finding the antiderivative of a given function that satisifes a given condition. Consider the problem of finding $f(x)$ if

$$
f^{\prime}(x)=6 x^{2}+2 x-5 \quad \text { and } \quad f(1)=3 .
$$

Approach \#1 Use an indefinite integral and then solve for the constant of integration:

$$
\begin{gathered}
f(x)=\int\left(6 x^{2}+2 x-5\right) d x=2 x^{3}+x^{2}-5 x+C \\
f(1)=3 \Longrightarrow 2(1)^{3}+(1)^{2}-5(1)+C=3 \\
-2+C=3 \Longrightarrow C=5 \\
f(x)=2 x^{3}+x^{2}-5 x+5
\end{gathered}
$$

Approach \#2 Use a definite integral:

$$
\begin{gathered}
f(x)=f(1)+\int_{1}^{x} f^{\prime}(t) d t \\
f(x)=f(1)+\int_{1}^{x}\left(6 t^{2}+2 t-5\right) d t \\
f(x)=3+\left.\left(2 t^{3}+t^{2}-5 t\right)\right|_{1} ^{x} \\
f(x)=3+2 x^{3}+x^{2}-5 x-(-2) \\
f(x)=2 x^{3}+x^{2}-5 x+5
\end{gathered}
$$

While it may seem more complicated, the second approach is especially nice because it gives a formula for $f(x)$ in only one step.

You should be comfortable with both of these approaches.

