\qquad
\qquad

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) In radioactive decay, the number of nuclei, N, decays according to the differential equation

$$
\frac{d N}{d t}=k N
$$

where k is the decay constant and t is time. We have already solved this DE to get the exponential growth/decay model $N(t)=C e^{k t}$. Use this model to solve the following problem.

The half-life of carbon-14 is approximately 5700 years. One of the Dead Sea scrolls found in 1947 contained 76% of its initial amount of carbon-14. About how old was the scroll?
2. (3 points) Consider the differential equation $y^{\prime}=1-y^{2}$.
(a) Use the attached Sage code or another online tool to plot the direction field for the DE. Without solving the DE, draw a rough sketch of the solution curve through $(0,0)$. What are the limits of your solution as $x \rightarrow \pm \infty$?
(b) Solve the differential equation along with the initial condition $y(0)=0$.
3. (3 points) The slope m of a curve is 0 where the curve crosses the y-axis, and in general,

$$
\frac{d m}{d x}=\sqrt{1+m^{2}} .
$$

Find m as a function of x. (In order to integrate, you'll need to use a trigonometric substitution. Show all work.)
4. (2 points) Solve: $\frac{d y}{d x}-\frac{y}{x}=x^{2}, \quad y(1)=3$

