Math 216 - 2nd Final Exam Name _Key
December 13, 2010 Score

Show all work to receive full credit. Supply explanations where necessary.

1. (12 points) A 3-kg mass is attached to a spring with spring constant 3N /m. The
damping constant for the system is 6 N-sec/m. The mass is moved 1m to the LEFT
of equilibrium (compressing the spring) and pushed to the RIGHT at 1m/sec. Set
up and solve the initial value problem that describes the displacement of the mass
from equilibrium. Is the mass-spring system underdamped, overdamped, or critically

damped?
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2. (10 points) Find the general solution of 3" + 2y" + 2¢/ = 0.
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3. (15 points) Solve: zy + 2y = 2, y(l)zl
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4. (15 points) One solution of the following equation is y(z) = /Z.
4z?y" — (2022 + dx)y’ + (10z + 3)y = 0

Find the general solution. (Hint: Do not forget to rewrite the equation in standard
form.)
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5. (12 points) Solve: Y =azy3e®, y(0)=1
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6. (12 points) Show that the following equation is exact and solve.
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7. (10 points) Use Euler’s method with a q’rep size of h = O 5 to dpproxnnate y(3), where
y(z) is the solution of the initial value problem y' = zy?, y(2) = 1.
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8. (20 points) Use Laplace transforms to solve the following IVP:
Y+ 2y +5y=2e"Y y(0)=0, y(0) =1

You may use the TI-92 to do any required partial fraction decompositions.
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9. (20 points) Use undetermined coefficients to find the general solution of the following

equation:
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10. (10 points) Find the orthogonal trajectories for the family of curves described by the
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11. (6 points) For z > 0, let y;(z) = Inz® and y,(z) = Inz. Compute the Wronskian of y,
and y,. Briefly explain why y(z) = ¢;91(x) + coy2(z) cannot be the general solution of
a 2nd-order, linear, homogeneous differential equation.

| g x® S x| s .

- k An X 5.4n x SN 6 £ hx
5 U N S
|

W Ly, 160 =

o

X X

Y, Avo Uy Aice NoT LiNEARLYL

\
|V DEP BT -

12. (4 points) What does it mean for two families of curves to be orthogonal trajectories
of one another?
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13. (4 points) Use a substitution to convert the following equation to a first order equation.
DO NOT SOLVE. How many constants of integration would your solution have?
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