1. Separable Equation

• Form: $\frac{dy}{dx} = f(x) g(y)$

• Solution obtained from
$$\int \frac{dy}{g(y)} = \int f(x) \, dx + C$$

2. Exact Equation

- Form: M(x,y) dx + N(x,y) dy = 0 where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
- Solution is defined implicitly by F(x, y) = C where

$$F(x,y) = \int M(x,y) \, dx + g(y)$$

and

$$F(x,y) = \int N(x,y) \, dy + h(x)$$

3. 1st Order, Linear Equation

• Form:
$$\frac{dy}{dx} + p(x)y = q(x)$$

- Let $\mu(x) = e^{\int p(x) dx}$
- The solution follows from $\mu(x)y(x) = \int \mu(x)q(x) dx$.

4. Bernoulli's Equation

- Form: $\frac{dy}{dx} + p(x)y = q(x)y^n$
- Let $v = y^{1-n}$ to obtain the linear equation

$$\frac{dv}{dx} + (1-n)p(x)v = (1-n)q(x)$$

- 5. Exact after Integrating Factor
 - Form: M(x, y) dx + N(x, y) dy = 0
 - (a) If $(\partial M/\partial y \partial N/\partial x) = 0$, the equation is exact.
 - (b) If $(\partial M/\partial y \partial N/\partial x) \div (-M) = g(y)$ is a function of only y, then $\mu(y) = e^{\int g(y) \, dy}$ is the integrating factor. Multiplication will make the equation exact.
 - (c) If $(\partial M/\partial y \partial N/\partial x) \div N = g(x)$ is a function of only x, then $\mu(x) = e^{\int g(x) dx}$ is the integrating factor. Multiplication will make the equation exact.

6. Homogeneous Equation

- Form: $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$
- Substitute v = y/x and dy/dx = v + x dv/dx.
- The new equation is separable.

7. Reducible to 1st-order (Type 1)

- Form: F(x, y', y'') = 0
- Substitute y' = u and y'' = u'.
- The new equation involves only x, u, and u'. Solve for u(x) and then for y(x).

8. Reducible to 1st-order (Type 2)

- Form: F(y, y', y'') = 0
- Substitute y' = u and $y'' = u \frac{du}{dy}$.
- The new equation involves only y, u, and du/dy. Solve for u(y) and then for y(x).

9. Euler's Method

Given dy/dx = f(x, y), y(x₀) = y₀
y(x_n) ≈ y_n where

 $y_{n+1} = y_n + h f(x_n, y_n)$ $x_{n+1} = x_n + h (h \text{ is the constant step size.})$

10. Improved Euler's Method

• Given
$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

• $y(x_n) \approx y_n$ where
 $y_{n+1} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*) \right)$
 $y_{n+1}^* = y_n + h f(x_n, y_n)$
 $x_{n+1} = x_n + h (h \text{ is the constant step size.})$

11. Orthogonal Trajectories

- Given a one-parameter family of curves: g(x, y) = c
- Find dy/dx. (Must not contain the constant c.)
- Find a DE for the orthogonal trajectories by taking a negative reciprocal.
- Solve the new DE.

12. Homogenous, 2nd Order, Linear, Constant-Coefficient Equation

- Form: $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$
- The characteristic equation is $at^2 + bt + c = 0$.
- Let r = -b/2a and $\omega = \sqrt{|b^2 4ac|}/2a$.
 - (a) If $b^2 4ac > 0$, the solution is $y(x) = c_1 e^{(r+\omega)x} + c_2 e^{(r-\omega)x}$.
 - (b) If $b^2 4ac = 0$, the solution is $y(x) = c_1 e^{rx} + c_2 x e^{rx}$.
 - (c) If $b^2 4ac < 0$, the solution is $y(x) = c_1 e^{rx} \cos \omega x + c_2 e^{rx} \sin \omega x$.

13. 2nd Order Cauchy-Euler Equation

- Form: $x^2 \frac{d^2y}{dx^2} + bx \frac{dy}{dx} + cy = 0$
- The substitution $x = e^t$ transforms the original equation to

$$\frac{d^2y}{dt^2} + (b-1)\frac{dy}{dt} + cy = 0.$$

• Solve the new constant coefficient equation and resubstitute.

14. Free Mechanical Vibrations

- Model: mx'' + bx' + kx = 0
 - (a) No damping if b = 0 (Simple harmonic motion)
 - (b) Underdamped if $b^2 4mk < 0$ (Damped oscillations)
 - (c) Overdamped if $b^2 4mk > 0$ (No oscillations)
 - (d) Critically damped if $b^2 4mk = 0$ (No oscillations)

15. Simple Harmonic Motion

• $c_1 \cos \omega t + c_2 \sin \omega t = A \sin(\omega t + \phi), \quad A > 0$

where

$$c_1 = A \sin \phi, \quad c_2 = A \cos \phi$$
$$A = \sqrt{c_1^2 + c_2^2}$$
$$\tan \phi = c_1/c_2$$

• Amplitude = A, Angular frequency = ω , Frequency = $f = \omega/(2\pi)$, Period = T = 1/f