Undetermined Coefficients for $y^{\prime \prime}+c y^{\prime}+d y=g(x)(c$ and d are constants)
$g(x)$
(1) $p_{n}(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$
(2) $a e^{\alpha x}$
(3) $a \cos \beta x+b \sin \beta x$
(4) $p_{n}(x) e^{\alpha x}$
(5) $\quad p_{n}(x) \cos \beta x+q_{m}(x) \sin \beta x$,
where $q_{m}(x)=b_{m} x^{m}+\ldots+b_{1} x+b_{0} \quad$ where $Q_{N}(x)=B_{n} x^{N}+\ldots+B_{1} x+B_{0}$ and $N=\max (n, m)$
(6) $a e^{\alpha x} \cos \beta x+b e^{\alpha x} \sin \beta x$
(7) $p_{n}(x) e^{\alpha x} \cos \beta x+q_{m}(x) e^{\alpha x} \sin \beta x$

$y_{p}(x)$

$x^{s} P_{n}(x)=x^{s}\left(A_{n} x^{n}+\ldots+A_{1} x+A_{0}\right)$
$x^{s} A e^{\alpha x}$
$x^{s}(A \cos \beta x+B \sin \beta x)$
$x^{s} P_{n}(x) e^{\alpha x}$
$x^{s}\left\{P_{N}(x) \cos \beta x+Q_{N}(x) \sin \beta x\right\}$,
$x^{s}\left(A e^{\alpha x} \cos \beta x+B e^{\alpha x} \sin \beta x\right)$
$x^{s} e^{\alpha x}\left\{P_{N}(x) \cos \beta x+Q_{N}(x) \sin \beta x\right\}$,
where $N=\max (n, m)$

The nonnegative integer s is chosen to be the least integer such that no term in $y_{p}(x)$ is a solution of the corresponding homogeneous equation $y^{\prime \prime}+c y^{\prime}+d y=0$.

Variation of Parameters

If y_{1} are y_{2} are two linearly independent solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then a particular solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$ is $y=v_{1} y_{1}+v_{2} y_{2}$, where

$$
v_{1}(x)=\int \frac{-g(x) y_{2}(x)}{W\left[y_{1}, y_{2}\right](x)} d x, \quad v_{2}(x)=\int \frac{g(x) y_{1}(x)}{W\left[y_{1}, y_{2}\right](x)} d x
$$

and $W\left[y_{1}, y_{2}\right](x)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)$.

2nd Solution from a 1st

If y_{1} is a nonzero solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then $y_{2}=v \cdot y_{1}$, where

$$
v(x)=\int \frac{1}{\left[y_{1}(x)\right]^{2}} \cdot e^{-\int p(x) d x} d x
$$

is also solution. Furthermore, y_{1} and y_{2} are linearly independent.

