Show all work to receive full credit. Supply explanations when necessary.

1. (10 points) A 1/2-kg mass is attached to a spring with spring constant 4 N/m. The damping constant for the system is 1/2 N-sec/m. The mass is moved 1 m to the left of equilibrium (compressing the spring) and pushed to the left at 1 m/sec. Find the equation of motion. Write your final result in terms of a single trig function with phase shift. Graph your solution and attach a copy.

$-x'' + \frac{1}{2}x' + 4x = 0;$			· •
x(o) = - x'(o) = -	x = 0 (Equilibrium		
x"+x'+8x=0			$\left(\frac{3}{\sqrt{31}}\right)^{2} = \sqrt{\frac{40}{31}}$
$r = \frac{-1 \pm \sqrt{1 - 4(1)}}{2}$ $c = -\frac{1}{2}, \beta = \frac{1}{2}$	<u>[31</u> ;		> of in Quab III
X(t) = c' 6 cos	131 + Cae SIN 31 +	: 1	$\frac{1}{3} \left(\frac{\sqrt{31}}{3} \right) + \pi$ ≈ 4.817
$\chi'(o) = -1 \Rightarrow C$ $\chi'(o) = -\frac{c_1}{a} + C$	$\sqrt{31}$ C _a	$\chi(t) = \frac{1}{2}$	$\sqrt{\frac{40}{31}}e^{-t/a}$ $SIN(\sqrt{\frac{31}{a}}t + 4.2181)$
x'(o) = -\ ⇒ -	$\begin{vmatrix} = \frac{1}{a} + \frac{\sqrt{31}}{a} c_a \\ c_a = -\frac{3}{\sqrt{31}} \end{vmatrix}$		
X(t)= -e ^{t/2}	$\cos \frac{\sqrt{31}}{2}t + \frac{3}{\sqrt{31}}e^{-t/2}s$	11N 2 t	

 $^{^1\}mathrm{If}$ you don't have a good plotting program, try one that is available online such as http://fooplot.com.

2*sqrt(10)*%e^-(t/2)*sin(sqrt(31)*t/2+4.218172935921613)/sqrt(31)

