Math 216 - Final Exam
 December 9, 2015

Name \qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) Solve the following initial value problem:

$$
\frac{d y}{d x}=3 x y, \quad y(0)=5
$$

2. (10 points) Find the orthogonal trajectories for the one-parameter family of curves $y=3 x^{2}+C$.
3. (6 points) Consider the initial value problem $y^{\prime}=x y, y(1)=2$. Use Euler's method with $h=0.5$ to approximate $y(2)$.
4. (8 points) Determine the recursive formulas for the Taylor method of order 3 for the IVP

$$
\frac{d y}{d x}=x+2 y, \quad y(0)=1
$$

5. (12 points) Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+4 y=0 ; \quad y(0)=2, y^{\prime}(0)=-1
$$

6. (12 points) Find the general solution of the ODE

$$
\left(x^{2}+1\right) y^{\prime}+x y=2 x
$$

7. (12 points) Find an integrating factor for the differential equation

$$
\left(x+x y^{3}\right) d x+3 y^{2} d y=0
$$

Then use your integrating factor to solve the equation.
8. (16 points) Solve the following initial value problem:

$$
y^{\prime \prime}-5 y^{\prime}+4 y=2 e^{4 x} ; \quad y(0)=1, y^{\prime}(0)=2
$$

9. (16 points) Consider the initial value problem

$$
x^{\prime \prime}+9 x=e^{t} ; \quad x(0)=2, x^{\prime}(0)=1 .
$$

(a) Compute the Laplace transform of both sides of the equation. Then solve for $X(s)$, the Laplace transform of $x(t)$.
(b) After expanding your solution above, you would find that

$$
X(s)=\frac{1}{10}\left(\frac{1}{s-1}\right)+\frac{19}{10}\left(\frac{s}{s^{2}+9}\right)+\frac{9}{10}\left(\frac{1}{s^{2}+9}\right) .
$$

Compute the inverse transform of $X(s)$ to determine $x(t)$.
10. (16 points) Find the general solution of $y^{\prime \prime}+4 y=\sec 2 x$.
11. (12 points) An object is launched from the ground into the air so that its velocity, in feet per second, at any time t (in seconds) satisfies the initial value problem

$$
v^{\prime}=-27 v-32, \quad v(0)=20
$$

Determine the function that gives the height of the object at time t.
12. (20 points) Consider the following system of ODEs.

$$
\begin{aligned}
& x^{\prime}+y^{\prime}-x=5 \\
& x^{\prime}+y^{\prime}+y=1
\end{aligned}
$$

(a) Write the system in operator notation and then determine the number of arbitrary constants in the general solution.
(b) Use any method to solve the system.

