Math 233 - Test 3b
November 11, 2021
Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations where necessary. You must work individually on this test. This test is due November 16.

1. (8 points) Find a set of parametric equations for the line normal to the surface $z=e^{4 x^{2}+2 x y-6 y}$ at the point $(1,1,1)$.
2. (6 points) Find the linearization of $h(x, y)=\tan ^{-1}(y / x)$ at the point $(1,1)$. Then use the linearization to approximate $h(0.98,1.03)$.
3. (8 points) Use the definition of differentiability to show that $f(x, y)=x^{2}+3 x y-2 y^{2}-y$ is differentiable everywhere on \mathbb{R}^{2}.
4. (10 points) Find and classify the critical points of $g(x, y)=y^{3}-3 y x^{2}-3 y^{2}-3 x^{2}+1$.
5. (8 points) The body mass index (BMI) for an adult human is given by $B=703 w / h^{2}$, where w is weight in pounds and h is height in inches. Suppose you weigh 185 lbs and your height is 68 in . Compute your BMI. Then assume your weight and height measurements have errors $\Delta w=1.75 \mathrm{lbs}$ and $\Delta h=0.5 \mathrm{in}$. Use differentials to estimate the error in your BMI.
