<u>Math 233 - Test 1</u>

September 14, 2023

Name_

Score _____

Show all work to receive full credit. Supply explanations where necessary.

- 1. (10 points) In this problem, the force vectors $\vec{F_1}$ and $\vec{F_2}$ are 2D vectors in the *xy*-plane.
 - (a) The force $\vec{F_1}$ has magnitude 50 and makes a 120° angle with the positive x-axis. Find the component form of $\vec{F_1}$.

(b) The force \vec{F}_2 has component form $\vec{F}_2 = 30\hat{\imath} - 30\sqrt{3}\hat{\jmath}$. What angle does \vec{F}_2 make with the positive x-axis?

(c) Refer to parts (a) and (b). Compute the resultant vector $\vec{F} = \vec{F_1} + \vec{F_2}$.

(d) Refer to part (c). What angle does \vec{F} make with the positive x-axis?

2. (4 points) Explain how the right-hand rule gives the orientation of the coordinate axes in a 3-dimensional rectangular coordinate system.

- 3. (6 points) Suppose that θ is the angle between the two nonzero vectors \vec{u} and \vec{w} . What can you say about $\vec{u} \cdot \vec{w}$ in each of these cases?
 - (a) θ is a right angle.
 - (b) θ is an acute angle.
 - (c) θ is an obtuse angle.
- 4. (6 points) Find a vector of magnitude 6 that has the direction from P(-2, 4, -3) to Q(-5, 3, 4).

5. (6 points) The figure below shows the vectors \vec{u} and \vec{v} . Sketch and label the vectors $\vec{u} + \frac{1}{2}\vec{v}$ and $\vec{v} - \vec{u}$, and illustrate how your vectors follow from the parallelogram law.

- 6. (6 points) Let $\vec{x} = -9\hat{\imath} 5\hat{\jmath} + 3\hat{k}$.
 - (a) Find a vector, different from \vec{x} , that is parallel to \vec{x} . Give a one-sentence explanation for how you know.
 - (b) Find a nonzero vector that is orthogonal to \vec{x} . Give a one-sentence explanation for how you know.
- 7. (10 points) For this problem, you will need to use that the distance from a point Q to the line passing through P and parallel to \vec{v} is given by

$$D = \frac{\|P\dot{Q} \times \vec{v}\|}{\|\vec{v}\|}.$$

(a) First choose any point on the line described by the parametric equations below. Let your point be Q. (There are infinitely many choices for Q.)

$$x = 3t - 4, \quad y = -5t, \quad z = t + 5.$$

(b) Now consider the line ℓ with symmetric equations

$$\frac{x+6}{2} = y-3 = \frac{z-1}{-3}.$$

Find a point P on ℓ and a vector \vec{v} parallel to ℓ .

(c) Compute the distance from Q to the line ℓ .

8. (8 points) Find the angle between the planes described by the equations below. Write your final answer in degrees rounded to the nearest hundredth.

$$2x - y + 2z = 7 \qquad -5x + 3z = 12$$

9. (4 points) Find the projection of $\vec{w} = \hat{i} + 4\hat{j} - 3\hat{k}$ onto $\vec{u} = 7\hat{i} + 4\hat{k}$.

10. (4 points) The figure below shows the vectors \vec{a} and \vec{b} . Sketch $\operatorname{proj}_{\vec{b}} \vec{a}$.

11. (8 points) A crystal structure has the form of a parallelepiped determined by the vectors $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 3\hat{j} + 5\hat{k}$, and $\vec{c} = -4\hat{i} + 2\hat{j} + \hat{k}$, where distances are measured in micrometers. Find the volume of the parallelepiped.

12. (6 points) Let
$$\vec{r}(t) = \frac{\sin t}{t}\hat{i} + \ln(t+1)\hat{j} + e^{2t}\hat{k}.$$

(a) Determine the domain of \vec{r} .

(b) Compute $\lim_{t\to 0} \vec{r}(t)$.

13. (4 points) Explain how to find a vector that is orthogonal to each vector in a pair of non-parallel vectors.

- 14. (8 points) Let $\vec{r}(t) = 3 \sin t \,\hat{\imath} 3 \cos t \,\hat{\jmath} + 4 \,\hat{k}$.
 - (a) Compute $\|\vec{r}(t)\|$.

(b) Determine the derivative $\vec{r}'(t)$.

(c) Compute $\vec{r}(t) \cdot \vec{r}'(t)$.

(d) Compute $\vec{r}(t) \times \vec{r}'(t)$.

15. (10 points) Find an equation of the plane passing through the points R(1, -2, 4), S(0, 3, -5), and T(8, 2, -3).