Math 233 - Test 1

September 14, 2023

Name \qquad Score

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) In this problem, the force vectors \vec{F}_{1} and \vec{F}_{2} are 2 D vectors in the $x y$-plane.
(a) The force \vec{F}_{1} has magnitude 50 and makes a 120° angle with the positive x-axis. Find the component form of \vec{F}_{1}.
(b) The force \vec{F}_{2} has component form $\overrightarrow{F_{2}}=30 \hat{\imath}-30 \sqrt{3} \hat{\jmath}$. What angle does \vec{F}_{2} make with the positive x-axis?
(c) Refer to parts (a) and (b). Compute the resultant vector $\vec{F}=\vec{F}_{1}+\vec{F}_{2}$.
(d) Refer to part (c). What angle does \vec{F} make with the positive x-axis?
2. (4 points) Explain how the right-hand rule gives the orientation of the coordinate axes in a 3 -dimensional rectangular coordinate system.
3. (6 points) Suppose that θ is the angle between the two nonzero vectors \vec{u} and \vec{w}. What can you say about $\vec{u} \cdot \vec{w}$ in each of these cases?
(a) θ is a right angle.
(b) θ is an acute angle.
(c) θ is an obtuse angle.
4. (6 points) Find a vector of magnitude 6 that has the direction from $P(-2,4,-3)$ to $Q(-5,3,4)$.
5. (6 points) The figure below shows the vectors \vec{u} and \vec{v}. Sketch and label the vectors $\vec{u}+\frac{1}{2} \vec{v}$ and $\vec{v}-\vec{u}$, and illustrate how your vectors follow from the parallelogram law.

6. (6 points) Let $\vec{x}=-9 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}$.
(a) Find a vector, different from \vec{x}, that is parallel to \vec{x}. Give a one-sentence explanation for how you know.
(b) Find a nonzero vector that is orthogonal to \vec{x}. Give a one-sentence explanation for how you know.
7. (10 points) For this problem, you will need to use that the distance from a point Q to the line passing through P and parallel to \vec{v} is given by

$$
D=\frac{\|\overrightarrow{P Q} \times \vec{v}\|}{\|\vec{v}\|}
$$

(a) First choose any point on the line described by the parametric equations below. Let your point be Q. (There are infinitely many choices for Q.)

$$
x=3 t-4, \quad y=-5 t, \quad z=t+5 .
$$

(b) Now consider the line ℓ with symmetric equations

$$
\frac{x+6}{2}=y-3=\frac{z-1}{-3} .
$$

Find a point P on ℓ and a vector \vec{v} parallel to ℓ.
(c) Compute the distance from Q to the line ℓ.
8. (8 points) Find the angle between the planes described by the equations below. Write your final answer in degrees rounded to the nearest hundredth.

$$
2 x-y+2 z=7 \quad-5 x+3 z=12
$$

9. (4 points) Find the projection of $\vec{w}=\hat{\imath}+4 \hat{\jmath}-3 \hat{k}$ onto $\vec{u}=7 \hat{\imath}+4 \hat{k}$.
10. (4 points) The figure below shows the vectors \vec{a} and \vec{b}. Sketch $\operatorname{proj}_{\vec{b}} \vec{a}$.

11. (8 points) A crystal structure has the form of a parallelepiped determined by the vectors $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}, \vec{b}=3 \hat{\jmath}+5 \hat{k}$, and $\vec{c}=-4 \hat{\imath}+2 \hat{\jmath}+\hat{k}$, where distances are measured in micrometers. Find the volume of the parallelepiped.

12. (6 points) Let $\vec{r}(t)=\frac{\sin t}{t} \hat{\imath}+\ln (t+1) \hat{\jmath}+e^{2 t} \hat{k}$.
(a) Determine the domain of \vec{r}.
(b) Compute $\lim _{t \rightarrow 0} \vec{r}(t)$.
13. (4 points) Explain how to find a vector that is orthogonal to each vector in a pair of non-parallel vectors.
14. (8 points) Let $\vec{r}(t)=3 \sin t \hat{\imath}-3 \cos t \hat{\jmath}+4 \hat{k}$.
(a) Compute $\|\vec{r}(t)\|$.
(b) Determine the derivative $\vec{r}^{\prime}(t)$.
(c) Compute $\vec{r}(t) \cdot \vec{r}^{\prime}(t)$.
(d) Compute $\vec{r}(t) \times \vec{r}^{\prime}(t)$.
15. (10 points) Find an equation of the plane passing through the points $R(1,-2,4)$, $S(0,3,-5)$, and $T(8,2,-3)$.
