Math 233 - Test 2
 October 12, 2023

Name \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (4 points) Describe, in detail, the graph of the vector-valued function

$$
\vec{r}(t)=(1+t) \hat{\imath}+(2+5 t) \hat{\jmath}+(-1+6 t) \hat{k} .
$$

2. (8 points) Consider the vector-valued function $\vec{r}(t)=(t+2) \hat{\imath}+\left(t^{2}-3\right) \hat{\jmath}$.
(a) Write a corresponding set of parametric equations whose graph is the same as that of \vec{r}.
(b) Eliminate the parameter t from your parametric equations above to find an equation for the graph in terms of the variables x and y.
(c) Sketch the graph of \vec{r} and use arrows to indicate the orientation.
3. (10 points) An object is launched from the point $P(0,1,-1)$ with initial velocity vector $\vec{v}(0)=\hat{\imath}-2 \hat{\jmath}+\hat{k}$. The object undergoes a constant acceleration of $\vec{a}(t)=\hat{\jmath}+2 \hat{k}$. Find the object's location at $t=4$.
4. (10 points) Set up the definite integral that gives the length of the graph of

$$
\vec{r}(t)=\left(3 t^{2}+1\right) \hat{\imath}+\left(4 t^{2}-1\right) \hat{\jmath}+4 t^{3} \hat{k}
$$

from $t=0$ to $t=2$. Evaluate your integral by hand. (If you've done everything correctly, your integral should require a simple u-substitution.)
5. (10 points) Let $\vec{r}(t)=(t-3) \hat{\imath}+(2 t-4) \hat{\jmath}+2 t \hat{k}$. Reparameterize \vec{r} in terms of the arc-length parameter starting from $t=3$.
6. (8 points) Show that the curvature at any point on the graph of $\vec{r}(t)=-2 \sin (2 t) \hat{\imath}-2 \cos (2 t) \hat{\jmath}$ is $1 / 2$.
7. (8 points) Sketch the graph of the vector-valued function $\vec{r}(t)=-2 \sin (2 t) \hat{\imath}-2 \cos (2 t) \hat{\jmath}$. Then, on your graph, sketch the vectors $\hat{T}(0)$ and $\hat{N}(0)$.
8. (15 points) A projectile is fired into the air from ground level with an initial speed of $500 \mathrm{~m} / \mathrm{sec}$ at an angle of 60° with the horizontal. (Use $g=9.8 \mathrm{~m} / \mathrm{sec}$.)
(a) Find the maximum height of the projectile.
(b) What is the range of the projectile?
(c) Show that the speed of the projectile when it hits the ground is $500 \mathrm{~m} / \mathrm{sec}$.
9. (12 points) Each of these equations defines a surface in 3 -space. Describe each surface.
(a) $4 y=x^{2}+8 z^{2}$
(b) $z=9 x-7 y+13$
(c) $x^{2}+y^{2}=4$
(d) $2 x^{2}+8 y^{2}+z^{2}=16$
10. (10 points) Let $G(x, y, z)=\sqrt{x^{2}+y^{2}-z}$.
(a) Evaluate $G(-4,5,-8)$.
(b) What is the domain of G ?
(c) Describe or sketch the level surface $G(x, y, z)=0$.
(d) Describe or sketch the level surface $G(x, y, z)=-1$.
(e) Describe or sketch the level surface $G(x, y, z)=1$.
11. (5 points) Find the curvature function for $y=e^{x}$. What happens to the curvature as $x \rightarrow \infty$? Explain how/why your answer is obvious from the graph of $y=e^{x}$.

