\qquad
\qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) Determine the limit or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(4,5)} \frac{\sqrt{x+y}-3}{x+y-9}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x y^{2}}$
2. (10 points) For $t>0$, let $\vec{r}(t)=t^{2} \hat{\imath}+4 t \hat{\jmath}+\ln t^{4} \hat{k}$. Compute the unit tangent vector $\hat{T}(t)$. Then compute $\hat{T}(2)$ and show that it indeed has magnitude 1 .
3. (10 points) Consider the surface described by the equation

$$
\sin z=\frac{1}{x y}
$$

(a) Find an equation of the plane tangent to the surface at the point $(1,2, \pi / 6)$.
(b) Find a set of parametric equations for the line normal to the surface at the point ($1,2, \pi / 6$).
4. (10 points) Find the critical points of $f(x, y)=x^{2}-\frac{1}{2} x^{4}-y^{2}-x y$. Then use the second partials test to classify the critical points and find the extreme values.
5. (10 points) Sketch the region of integration, reverse the order of integration, and evaluate.

$$
\int_{0}^{1 / 2} \int_{y^{2}}^{1 / 4} y \cos \left(16 \pi x^{2}\right) d x d y
$$

6. (10 points) Find the total area of the three petals of the rose curve $r=2 \cos 3 \theta$. (Take advantage of symmetry! And, you may need to use a power reducing formula when integrating.)
7. (10 points) Evaluate $\int_{C}(x y+2 z) d s$, where C is the line segment in space from $P(0,1,1)$ to $Q(1,0,0)$.
