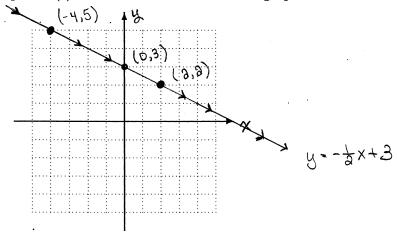
Math 233 - Quiz 4 September 18, 2025

Name_	key	
		Score

Show all work to receive full credit. Supply explanations when necessary.

- 1. (5 points) Let $\vec{r}(t) = (6t 4)\hat{i} + (-3t + 5)\hat{j}$.
 - (a) Write the set of parametric equations whose graph is that of $\vec{r}(t)$. Then eliminate the parameter t to obtain an equation in the rectangular coordinates x and y.


$$X = 6t - 4$$

$$Y = -3t + 5$$

$$t = \frac{x+4}{6} = \frac{x}{6} + \frac{a}{3}$$

$$y = -3\left(\frac{x}{6} + \frac{a}{3}\right) + 5 \Rightarrow y = -\frac{1}{a}x + 3$$

(b) Carefully sketch the graph of $\vec{r}(t)$ and draw arrows to show the graph's orientation.

2. (2 points) Let $\vec{r}(t) = t \hat{i} + t^2 \hat{j} + t^3 \hat{k}$. Compute the principal unit tangent vector $\hat{T}(t)$

$$\tilde{r}'(t) = \hat{t} + 3t\hat{j} + 3t^3\hat{k}$$

$$\|\tilde{r}'(t)\| = \sqrt{1 + 4t^3 + 9t^4}$$

$$T(t) = \frac{\hat{c} + 2t\hat{j} + 3t^2\hat{k}}{\sqrt{1 + 4t^2 + 9t^4}}$$

3. (3 points) Let $\vec{r}(t) = -2\sin 7t \,\hat{\imath} + 9\,\hat{\jmath} + 2\cos 7t\,\hat{k}$. Compute $\|\vec{r}(t)\|$, and then show that $\vec{r}(t)$ is orthogonal to its derivative.

$$\|\vec{r}(t)\| = \sqrt{4 \sin^3 7t + 81 + 4 \cos^2 7t} = \sqrt{4 + 81} = \sqrt{85}$$

$$\vec{r}(t) \cdot \vec{r}'(t) = 38 \sin 7t \cos 7t + 0 - 38 \sin 7t \cos 7t = 0$$