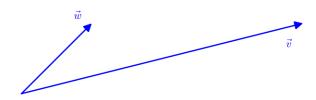
Math 23	33	- Test	1
September	11,	2025	

Name _______Score _____


Show all work to receive full credit. Supply explanations where necessary.

1. (4 points) The vector \vec{v} has initial point (-2,5) and terminal point (3,-1). Find the component form of the unit vector with the direction of \vec{v} .

2. (9 points) Three forces in the xy-plane act on an object. Two of the forces have magnitudes 58 and 27, and they make angles of 53° and 152° with the positive x-axis, respectively. The third force acts in such a way that the resultant force (the sum of all three) is zero. Find the component form of the third force. Then determine the angle that it makes with the positive x-axis? Round to two decimal places.

3. (4 points) Let $\vec{u} = 4\hat{\imath} - 9\vec{j}$. Find a vector in the *xy*-plane that has magnitude 2 and is perpendicular to \vec{u} .

4. (4 points) Referring to the vectors shown below, sketch the vector $2\vec{w} + \vec{v}$.

5. (5 points) Show that A (5, 3, -1), B (-5, -3, 1), and C (-15, -9, 3) are collinear points.

6. (5 points) Let M be the midpoint of P(1, 4, -5) and Q(9, -2, -1). Find the point M and compute $\|\vec{MQ}\|$.

7. (2 points) In a 3D coordinate system, suppose the positive x-axis points to the right on this page and the positive z-axis points down (on the page). Describe the placement of the positive y-axis.

8. (6 points) Find the measure of the angle between $\vec{x} = -3\hat{\imath} + 5\hat{\jmath} + 2\hat{k}$ and $\vec{y} = 6\hat{\imath} - 2\hat{\jmath} + \hat{k}$. Write your final answer in degrees rounded to the nearest tenth.

9. (6 points) Find the projection of $\vec{p} = 4\hat{\imath} + 5\hat{\jmath} - 6\hat{k}$ onto $\vec{q} = -3\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$.

- 10. (3 points) Assuming $\vec{a} \neq \vec{b}$, describe a case in which $\operatorname{proj}_{\vec{a}} \vec{b} = \operatorname{proj}_{\vec{b}} \vec{a}$. Explain.
- 11. (3 points) What can be said about the sign of $\vec{u} \cdot \vec{w}$ in each case below?
 - (a) The angle between \vec{u} and \vec{w} is obtuse.
 - (b) The angle between \vec{u} and \vec{w} is acute.
 - (c) The angle between \vec{u} and \vec{w} is a right angle.

12. (6 points) Let $\vec{v} = \hat{\imath} + 3\hat{\jmath} - 2\hat{k}$ and $\vec{w} = -3\hat{\imath} + 5\hat{k}$. Show that \vec{v} is orthogonal to $\vec{v} \times \vec{w}$.

13. (7 points) Find the area of the triangle with vertices P(-4,3,2), Q(-1,-8,7) and R(3,0,-2).

14. (8 points) Find parametric and symmetric equations of any line in the plane given by x - 7y + 3z = 12.

15. (8 points) Find an equation of the plane that passes through P(5, -2, 8) and contains the line

$$\frac{x-4}{3} = y+3 = \frac{z-1}{6}.$$

- 16. (8 points) A plane is described by the equation 5x 3y + 2z = 2.
 - (a) Show that Q(2,4,3) is NOT a point on the plane.

(b) Find the distance from the point Q to the plane.

(c) Now consider the point R(-1, -2, 5). Without actually computing the distance from R to the plane, say which point, Q or R, is closer to the plane. How do you know?

17. (8 points) Find parametric equations for the line of intersection of the two planes.

$$P_1: x + y - 5z = 4$$

$$P_1: \quad x+y-5z=4$$
 $P_2: \quad 2x-y-3z=1$

18. (4 points) Find the measure of the angle that $\vec{w} = 5\hat{i} - 7\hat{j} + 9\hat{k}$ makes with the positive y-axis. Write your final answer in degrees rounded to the nearest tenth.