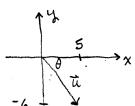
Math 233 - Quiz 1

January 21, 2021

Show all work to receive full credit. Supply explanations when necessary. This quiz is due January 28.

- 1. (4 points) Let \vec{u} be the vector from P(-2,5) to Q(3,-1).
 - (a) Find the component form of \vec{u} .

$$\vec{u} = \vec{PQ} = \langle 3-(-a), -1-5 \rangle = \langle 5, -6 \rangle = 5\hat{c} - 6\hat{c}$$


(b) Compute $\|\vec{u}\|$.

$$||\vec{u}|| = \sqrt{(5)^2 + (-6)^2} = \sqrt{25 + 36} = \sqrt{61}$$

(c) Determine a vector of magnitude 5 whose direction is opposite that of \vec{u} .

$$-5\frac{\vec{u}}{\|\vec{u}\|} = -\frac{5}{\sqrt{61}}\vec{u} = \left(-\frac{5}{\sqrt{61}}\left(5\hat{i} - 6\hat{j}\right)\right)$$

(d) What angle does \vec{u} make with the positive x-axis? Write your answer in degrees, rounded to the nearest tenth.

$$7AN \theta = \frac{-6}{5} \Rightarrow \theta \approx -50.2^{\circ}$$

OR WE COULD SAY 309.8°

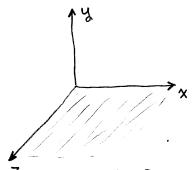
2. (2 points) Let $\vec{u} = -3\hat{\imath} + 5\hat{\jmath}$ and let \vec{v} be the 2D vector of magnitude 4 that makes a 120° angle with the positive x-axis. Compute $3\vec{u} + \vec{v}$ and then find its magnitude.

$$\vec{\lambda} = -3\hat{i} + 5\hat{j}$$

$$\vec{\nabla} = 4 \cos 130^{\circ} \hat{i} + 4 \sin 130^{\circ} \hat{j}$$

$$= -2\hat{i} + 2\sqrt{3}\hat{j}$$

$$3\vec{u} + \vec{\nabla} = (-9\hat{i} + 15\hat{j})$$


$$+ (-2\hat{i} + 2\sqrt{3}\hat{j})$$

$$3\vec{u} + \vec{v} = -11\hat{c} + (15 + 2\sqrt{3})\hat{J}$$

= $\sqrt{(-11)^{a} + (15 + 2\sqrt{3})^{a}} \approx 21.49$

Turn over.

3. (1 point) Write an equation of the plane passing through (1, -3, 2) that is parallel to the xz-plane.

PARALLEL TO THIS PLANE (4=0), BUT 3 UNITS DOWN.

4. (1 point) Use vectors to show that the points A(1,0,1), B(0,1,1), and C(1,1,1) are not collinear.

$$\overrightarrow{AB} = (0-1)\hat{c} + (1-0)\hat{j} + (1-1)\hat{k} = -\hat{c} + \hat{j}$$

$$\overrightarrow{AC} = (1-1)\hat{c} + (1-0)\hat{j} + (1-1)\hat{k} = \hat{j}$$

$$\overrightarrow{AB} \neq t \overrightarrow{AC}$$

AB AND AC ARE NOT SCALAR MULTIPLES OF EACH OTHER. AC IS NOT PARALLEL TO AB. THEY CAN'T

5. (2 points) Let $\vec{a} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and let $\vec{b} = \vec{v} - \vec{w}$, where $\vec{v} = 2\hat{\imath} + \hat{\jmath} + 4\hat{k}$ and $\vec{w} = 6\hat{\imath} + \hat{\jmath} + 2\hat{k}$. Find the measure of the angle between \vec{a} and \vec{b} . Write your answer in radians, rounded to the nearest hundredth.

$$\vec{a} = 3\hat{i} - \hat{j} + a\hat{k}$$

$$\vec{b} = \vec{v} - \vec{\omega} = (a\hat{i} + \hat{j} + 4\hat{k})$$

$$- (6\hat{i} + \hat{j} + a\hat{k})$$

$$= -4\hat{i} + a\hat{k}$$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} = \frac{-1a + 0 + 4}{\sqrt{14} \sqrt{ao}} = \frac{-8}{\sqrt{80}}$$