Math 233 - Final Exam A  Name \Zeq
May 8, 2021 < Score

Show all work to receive full credit. Each problem is worth 5 points. Place your final
answer in the box provided. This test is due May 13.

1. A baseball, hit 3 feet above the ground, leaves the bat at an angle of 45° and is caught
by an outfielder at a height of 3 feet above the ground and 300 feet from home plate.
What is the initial speed of the ball? (To receive full credit, you must write and use
the vector-valued function 7(t) that gives the position of the ball at time ¢. Also ignore
air resistance and use g &~ 32fts2.)
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2. Find the limit or show that it does not exist:
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4. Find an equation of the plane tangent to the graph of z = tan~(y/x)
at the point (1, 1, %)




5. Reverse the order of integration and evaluate.
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6. Evaluate the iterated integral by first converting to cylindrical coordinates.
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7. A solid in space is bounded above by the elliptic paraboloid z = 8 — 222 — y* and
below by the cylinder z = y?. The density of the solid at the point (z,y, 2) is given by
p(z,y,2z) = z+ z? + 3% Set up the iterated integral that gives the mass of the solid.
DO NOT EVALUATE. (You may use whichever coordinate system you prefer.)
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8. Let ﬁ(:c, y,z) = yi + 227 — zk. Evaluate / F(z,y,z) - dr, where C is the line segment
c
from (0,1,1) to (1,3,5).
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Math 233 - Final Exam B Name _ Key
May 13, 2021 J

Score

Show all work to receive full credit. Each problem is worth 5 points. Place your final

answer in the box provided.

1. The vectors @ = 37+ 37 and b=6i— 27 are shown below. Sketch and compute projy a.
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2. Given the points A (5,3,1), B (3,2,3), and C (—4,—1,2), find a nonzero vector that is

orthogonal to both AB and AC. . L \
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3. The line £ has the symmetric equations —x = y—° 3" Find a set of parametric

equations for the line through (5,2, —4) and parallel to £. )
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4. Find the measure of the acute angle between the planes given below. Give your final
answer in degrees, rounded to the nearest tenth.
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5. Find the length of the graph of 7(t) = (3t — 1)i + (2t + 7)j — (t — 5)k from the point
where ¢ = 1 to the point where ¢t = 3. 3
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6. Suppose f is a function of the three variables z, y, and z. Choose two different fourth-
order partial derivatives of f and state the conditions under which they will be equal
to one another.
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7. Use differentials to estimate the change in f(z,v, z) = 2® In(5yz+1) as (z,y, 2) changes
from (2,1,1) to (1.99,1.02,1.01). Round your final answer to four decimal places.
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8. Find the directional derivative of g(x,y, z) = zye® at P (2,4,0) in the direction toward
the point @ (0,0,0).
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9. Over a certain region in space the electrical potential V' is given by
V(z,y,2) = 55 — 3oy + zyz.

At the point (3,4, 5), in which direction does the potential decrease most rapidly?
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10. Find the critical point(s) of f(z,y) = z* + zy + 2y?> + z — 3y + 10. Then use the
2nd-partials test to classify the critical point(s).
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11. Let P be the plane region between the graphs of y = 22 and y = = + 2. Sketch the
region P and then evaluate the double integral given below.
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