<u>Math 233 - Final Exam A</u> May 8, 2021

Name <u>key</u> Score

Show all work to receive full credit. Each problem is worth 5 points. Place your final answer in the box provided. This test is due May 13.

1. A baseball, hit 3 feet above the ground, leaves the bat at an angle of 45° and is caught by an outfielder at a height of 3 feet above the ground and 300 feet from home plate. What is the initial speed of the ball? (To receive full credit, you must write and use the vector-valued function $\vec{r}(t)$ that gives the position of the ball at time t. Also ignore air resistance and use $g \approx 32 \, \mathrm{ft \, s^{-2}}$.)

$$\vec{r}(t) = v_0 \cos 45^{\circ} t \hat{i} + (-16t^2 + v_0 \sin 45^{\circ} t + 3)\hat{j}$$

$$= \frac{v_0 \sqrt{a}}{a} t \hat{i} + (-16t^2 + \frac{v_0 \sqrt{a}}{a} t + 3)\hat{j}$$

$$\frac{\sqrt{0}\sqrt{a}}{a} + = 300 \quad 3 \quad -16t^{a} + \frac{\sqrt{0}\sqrt{a}}{a}t + 3 = 3$$

$$\Rightarrow -16t^{a} + 300 = 0 \Rightarrow t = \sqrt{\frac{300}{16}}$$

$$\sqrt{0} = \frac{600}{\sqrt{a}t}$$

$$= \frac{600}{\sqrt{a}\sqrt{\frac{300}{16}}}$$

2. Find the limit or show that it does not exist:

$$\lim_{(x,y)\to(2,1)} \frac{x-y-1}{\sqrt{x-y}-1} \quad {}^{\bullet}\!\!/\!\!o$$

$$\lim_{(x,y)\to(a,1)} \frac{x-y-1}{\sqrt{x-y}-1} \cdot \frac{\sqrt{x-y}+1}{\sqrt{x-y}+1} \\
= \lim_{(x,y)\to(a,1)} \frac{(x-y-t)(\sqrt{x-y}+1)}{(x-y-t)} = 2$$

0

$$\lim_{(x,y)\to (1,1)} \frac{x^2-y^2-2x+2y}{2x^2-4x+y+1} \qquad \text{for e}$$
 work

$$y = 1$$
: $x \to 1$ $\frac{3x^2 - 4x + 3}{2x^2 - 4x + 3} = x \to 1$ $\frac{3(x-1)^2}{2(x-1)^2} = \frac{1}{2}$

LIMIT DNE BY TWO-PATH TEST

4. Find an equation of the plane tangent to the graph of $z = \tan^{-1}(y/x)$ at the point $\left(1, 1, \frac{\pi}{4}\right)$.

$$F(x,y,z) = TAN^{-1}\left(\frac{y}{x}\right) - Z$$

$$\overrightarrow{\nabla} F(x,y,z) = \frac{-\frac{y}{x^{a}}}{1 + \left(\frac{y}{x}\right)^{a}} + \frac{1}{1 + \left(\frac{y}{x}\right)^{a}} - k$$

$$\overrightarrow{\nabla} = \overrightarrow{\nabla} F(1,1,\frac{\pi}{4}) = -\frac{1}{a} + \frac{1}{a} +$$

TAN PLANE IS
$$-\frac{1}{3}(x-1) + \frac{1}{3}(y-1) - (z-\frac{\pi}{4}) = 0$$

20

$$-\frac{1}{2}x + \frac{1}{2}y - Z = -\frac{\pi}{4}$$

5. Reverse the order of integration and evaluate.

6. Evaluate the iterated integral by first converting to cylindrical coordinates.

7. A solid in space is bounded above by the elliptic paraboloid $z=8-2x^2-y^2$ and below by the cylinder $z=y^2$. The density of the solid at the point (x,y,z) is given by $\rho(x,y,z)=z+x^2+y^2$. Set up the iterated integral that gives the mass of the solid. DO NOT EVALUATE. (You may use whichever coordinate system you prefer.)

$$8-3x^{2}-y^{2}=y^{3} \Rightarrow 8-3x^{2}-3y^{3}=0$$

8. Let $\vec{F}(x,y,z) = y\hat{i} + x^2\hat{j} - z\hat{k}$. Evaluate $\int_C \vec{F}(x,y,z) \cdot d\vec{r}$, where C is the line segment from (0,1,1) to (1,3,5).

C:

$$X = t$$

$$Y = 2t+1$$

$$Z = 4t+1$$

$$dr^2 = dx \hat{i} + dy \hat{j} + dz \hat{k}$$

$$= dt \hat{i} + \partial dt \hat{j} + 4dt \hat{k}$$

$$\vec{F} \cdot d\vec{r} = y dt + x^{2}(a) dt - z(4) dt$$

$$= (2t+1) dt + 2t^{2} dt - (16t+4) dt$$

$$\int_{0}^{1} (3t^{2} - 14t - 3) dt = \frac{3}{3} - \frac{14}{3} - 3 = \left(-\frac{38}{3}\right)$$

$\frac{\text{Math 233 - Final Exam B}}{\text{May 13, 2021}}$

Name key Score

Show all work to receive full credit. Each problem is worth 5 points. Place your final answer in the box provided.

1. The vectors $\vec{a}=3\hat{\imath}+3\hat{\jmath}$ and $\vec{b}=6\hat{\imath}-2\hat{\jmath}$ are shown below. Sketch and compute $\operatorname{proj}_{\vec{b}}\vec{a}$.

$$PRO_{1} \stackrel{?}{d} = \frac{9}{5} \stackrel{?}{c} - \frac{3}{5} \stackrel{?}{J}$$

2. Given the points A(5,3,1), B(3,2,3), and C(-4,-1,2), find a nonzero vector that is orthogonal to both \overrightarrow{AB} and \overrightarrow{AC} .

$$\vec{A}\vec{B} = -3\hat{c} - \hat{j} + 3\hat{k}$$

$$\vec{A}\vec{C} = -9\hat{c} - 4\hat{j} + \hat{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{1} & \hat{1} & \hat{1} \\ -\hat{2} & -1 & \hat{2} \\ -\hat{3} & -1 & \hat{1} \end{vmatrix} = \hat{1}(7) - \hat{1}(16)$$

$$= (7\hat{1} - 16\hat{1} - \hat{1})$$

3. The line ℓ has the symmetric equations $-x = \frac{y-1}{3} = \frac{z}{2}$. Find a set of parametric equations for the line through (5,2,-4) and parallel to ℓ .

$$x = 5 - t$$
, $y = a + 3t$, $z = -4 + at$

4. Find the measure of the acute angle between the planes given below. Give your final answer in degrees, rounded to the nearest tenth.

$$3x + 2y - 7z = 0$$

$$-4x + 4y + 2z = 13$$

$$\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{\|\vec{n}_1\| \|\vec{n}_2\|} = \frac{-18}{\sqrt{68} \sqrt{36}}$$

$$\theta = \cos^{-1}\left(\frac{-18}{\sqrt{62}\sqrt{36}}\right) \approx 112.3957$$

NOT ACUTE ANGLE SO

SUBTRACT FROM 180°

5. Find the length of the graph of $\vec{r}(t) = (3t-1)\hat{\imath} + (2t+7)\hat{\jmath} - (t-5)\hat{k}$ from the point where t=1 to the point where t=3.

$$\int_{1}^{3} \| \vec{r}'(t) \| dt = \int_{1}^{3} \sqrt{9 + 4 + 1} dt = \int_{1}^{3} \sqrt{14} dt$$

$$= \left(2\sqrt{14} \right)$$

6. Suppose f is a function of the three variables x, y, and z. Choose two different fourth-order partial derivatives of f and state the conditions under which they will be equal to one another.

- 1 MIXED SAME WAY
- @ CONTINUOUS

7. Use differentials to estimate the change in $f(x, y, z) = x^2 \ln(5yz+1)$ as (x, y, z) changes from (2, 1, 1) to (1.99, 1.02, 1.01). Round your final answer to four decimal places.

$$dz = \partial x \ln (5yz+1) dx + \frac{5x^{2}z}{5yz+1} dy + \frac{5x^{2}y}{5yz+1} dz$$

$$\Delta z \approx (4 \ln 6)(-0.01) + (\frac{20}{6})(0.00) + (\frac{20}{6})(0.01)$$

$$\Delta z \approx 0.02833$$

8. Find the directional derivative of $g(x, y, z) = xye^z$ at P(2, 4, 0) in the direction toward the point Q(0, 0, 0).

$$\frac{-16}{\sqrt{20}} = \frac{-8}{\sqrt{5}} \approx -3.5777$$

9. Over a certain region in space the electrical potential V is given by

$$V(x, y, z) = 5x^2 - 3xy + xyz.$$

At the point (3, 4, 5), in which direction does the potential decrease most rapidly?

$$\vec{\nabla} V(x,y,z) = (10x-3y+yz)\hat{c} + (-3x+xz)\hat{j} + xy\hat{k}$$

$$\vec{\nabla} V(3,4,5) = 38\hat{c} + 6\hat{j} + 13\hat{k}$$

$$\vec{\nabla} Opposite This Direction$$

10. Find the critical point(s) of $f(x,y) = x^2 + xy + 2y^2 + x - 3y + 10$. Then use the 2nd-partials test to classify the critical point(s).

$$f_{x}(x,y) = 3x + y + 1 = 0$$

$$f_{y}(x,y) = x + 4y - 3 = 0$$

$$3x + y = -1$$

$$-3(x + 4y = 3)$$

$$-7y = -7$$

$$4(x,y) = 8 + 1 = 8 - 1 = 7 > 0$$

$$And f_{xx} = 3 > 0$$

$$y = 1$$

$$x = 3 - 4(1)$$

$$= -1$$

$$5$$

11. Let P be the plane region between the graphs of $y = x^2$ and y = x + 2. Sketch the region P and then evaluate the double integral given below.

12. Evaluate the iterated integral by converting to polar coordinates.

