Math 233 - Quiz 2

January 27, 2022

This quiz is available in Canvas. It is due February 1.

- 1. (1 point) What is the 3rd component of the projection of $\vec{b} = 2\hat{\imath} 3\hat{\jmath} + \hat{k}$ onto $\vec{a} = 3\hat{\imath} + 4\hat{\jmath} - 6\hat{k}$?
 - - (c) 36/7
 - (d) -6/7

- $PROJ_{a} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\vec{a}} \vec{a}$
 - $=\frac{-12}{61}$ < 3, 4, -6 >
- 2. (1 point) Let $\vec{v} = -2\hat{\imath} + \frac{3}{2}\hat{\jmath} 7\hat{k}$. For which one of the vectors below is it true that
 - $\vec{v} \times \vec{w} = \vec{0}?$
 - (a) $\vec{w} = \hat{\imath} + \hat{k}$
 - (b) $\vec{w} = 8\hat{\imath} 6\hat{\jmath} + 28\hat{k}$ $\omega = -4\sqrt{\hat{V}}$

- W MUST BE PARALLEL TO V

- (d) $\vec{w} = 3\hat{\imath}$
- 3. (2 points) The vector \vec{w} is orthogonal to both $\vec{u} = \hat{\imath} + 2\hat{\jmath} \hat{k}$ and $\vec{v} = -3\hat{\imath} \hat{\jmath} + \hat{k}$. Furthermore, the 1st component of \vec{w} is -2. What is the 2nd component of \vec{w} ?

 - (d) Not enough information to tell
- $\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ 1 & a & -1 \\ -3 & -1 & 1 \end{vmatrix} = \hat{i}(1) \hat{j}(-a) + \hat{k}(5)$ $= \hat{i} + 2\hat{i} + 5\hat{k}$

$$\hat{\omega} = -2\hat{c} - 4\hat{j} - 10\hat{k}$$

- 4. (2 points) Determine the volume of the parallelepiped determined by the vectors $\vec{x} = \langle 1, 2, -1 \rangle$, $\vec{y} = \langle 0, -1, 1 \rangle$, and $\vec{z} = \langle 1, 3, 0 \rangle$.

 - (d) $\sqrt{62}$

 $\begin{vmatrix} 1 & 3 & -1 \\ 0 & -1 & 1 \\ 1 & 3 & 0 \end{vmatrix} = 1(-3) - 3(-1) + (-1)(1)$ = -3 + 2 - 1 = -2

$$= -3+3-1 = -3$$

- 5. (2 points) A line passes through the points P(2,3,-1) and Q(-5,6,2). Which one of these is an additional point on that same line?
 - (a) (-2, -3, 1)

PQ = -72+31+3k

(b) (-7,3,3)

Using P ...

(c) (-3, 9, 1)

x=-7++2

(d) (23, -6, -10)

- y = 3++3

- Z = 3t-1
- X = 23, y=-6, 2 = -10
- 6. (1 point) A line is defined by the symmetric equations $\frac{x+3}{2} = \frac{y-7}{4} = 8-z$. Which one of these vectors is parallel to the line?
 - (a) $2\hat{\imath} + 4\hat{\jmath} \hat{k}$

 $\frac{X+3}{2} = \frac{y-7}{4} = \frac{z-8}{-1}$

(b) $-3\hat{i} + 7\hat{j} + 8\hat{k}$

V = 20 + 41 - k

- (c) $2\hat{i} + 4\hat{j} + \hat{k}$
- (d) $2\hat{i} + 4\hat{j}$

7. (1 point) A line is defined by the parametric equations shown here. Which vector below is parallel to the line?

$$x = -9 + 3t$$

$$y = 7 + 2t$$

$$z = 8 - 4t$$

- (b) $\langle 9, -7, -8 \rangle$
- (c) (1, 1, 1)

= 31 + 21 - 4k