Test 1A

(!) This is a preview of the published version of the quiz

Started: Feb 16 at 9:25pm

Quiz Instructions

Choose the best answer for each problem. There is also a paper portion of the test that is posted and due Tuesday, Feb 15.

Question 1

3 pts

Which one of these vectors has magnitude 4 and makes a 210° angle with the positive x-axis?

$$\sqrt{-2\sqrt{3}\,\hat{\imath}-2\hat{\jmath}}$$

$$\bigcirc \ -3\sqrt{2}\,\hat{\imath} - 2\hat{\jmath}$$

$$\bigcirc -2\sqrt{3}\,\hat{\imath} + 2\,\hat{\jmath}$$

$$\bigcirc -2\sqrt{2}\hat{\imath} - 2\sqrt{2}\hat{\jmath}$$

4 pts

Determine the 2-dimensional vector of magnitude 3 that has the direction from $P\left(4,7\right)$ to $Q\left(-1,6\right)$. What is your vector's 2nd component?

$$X - 3/\sqrt{26}$$

$$0.03/\sqrt{26}$$

$$\bigcirc$$
 5/ $\sqrt{26}$

$$\bigcirc -\sqrt{3}/\sqrt{8}$$

Question 3

4 pts

Let M be the midpoint of $P\left(5,6,-3\right)$ and $Q\left(4,-6,7\right)$. What is the 3rd component of \overrightarrow{MP} ?

$$M = \left(\frac{5+4}{a}, \frac{6+(-6)}{a}, \frac{-3+7}{a}\right) = \left(\frac{9}{a}, 0, a\right)$$

$$\sqrt{-5}$$

$$\bigcirc$$
 -8

$$\bigcirc$$
 -1

Question 4

3 pts

Which vector below is NOT orthogonal to $ec{u} = -2\,\hat{\imath} - 8\hat{\jmath} + 7\hat{k}$?

DOT PRODUCT ZERO.

$$igwedge -rac{1}{2}\,\hat{\imath}-rac{1}{8}\,\hat{\jmath}+rac{2}{7}\,\hat{k}$$

$$\bigcirc 0 \hat{\imath} + 0 \hat{\jmath} + 0 \hat{k}$$

$$\bigcirc 4\hat{\imath} - \hat{\jmath}$$

Question 5

6 pts

Find the area of triangle ABC, where A(1,3,-2), B(5,3,1), and C(8,-2,-3).

$$\frac{\overrightarrow{AB}}{2} = 4\hat{c} + 0\hat{j} + 3\hat{k}$$

$$\overrightarrow{AC} = 7\hat{c} + -5\hat{j} - \hat{k}$$

$$0 \frac{\sqrt{434}}{2} \qquad \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{c} & \hat{j} & \hat{k} \\ 4 & 0 & 3 \\ 7 & -5 & -1 \end{vmatrix} = \hat{c} (15) - \hat{j} (-35) + \hat{k} (-30)$$

$$0 \frac{5\sqrt{26}}{2} \qquad = |5\hat{c}| + 3\hat{j} - 30\hat{k}$$

$$= |5\hat{c}| + 3\hat{j} - 30\hat{k}$$

$$= |35\sqrt{2}| = |35\sqrt{2}|$$

$$= \sqrt{|350|} = \frac{35\sqrt{2}}{8}$$

Question 6

5 pts

 $\overrightarrow{PQ} = -4 \hat{c} - 4 \hat{g} \qquad (Oncy | ST_{ANO}| 3^{RA} | LINES | HAVE | CORRECT | A line passes through the points <math>P(1,2,5)$ and Q(-3,2,1). Which one of these is $O(R) \in CT(ONS)$ a set of parametric equations for the line?

$$x=t-1, \quad y=2, \quad z=t+3$$
 \rightarrow P comes from $t=3$, Q comes from $t=3$, $y=2t+2, \quad z=5t+1$

$$\bigcirc \ x = 4t + 3, \quad y = t + 2, \quad z = 4t - 1$$

$$\bigcirc x=4t-1, \quad y=-2, \quad z=4t-5$$

Question 7

3 pts

A surface in space is defined by the equation $-4x^2+16y^2-8z^2=0$. Which one of these is true?

Fix y= k + 4x + 8z = 16k

 \bigcirc The surface is a cylinder with an elliptical generating curve.

The surface is a cone whose traces parallel to the xz-plane are ellipses.

(ELLIPSES)

NOT A HYPERBOLDID

 \bigcirc The surface is a cone whose traces parallel to the xy-plane are parabolas.

 \bigcirc The surface is a hyperboloid of one sheet.

CROSS SECTIONS ARE
HYPERBOLAS, EULIPSES,
HYPERBOLAS

Question 8

3 pts

A surface in space is defined by the equation $x^2+z^2=4$. Which one of these is true?

CIRCLES UP THE

- The surface is a paraboloid with circular cross sections.
- O The surface is a cylinder whose generating curve is a parabola.
- \bigcirc The surface is a cone whose traces parallel to the xz-plane are circles.

Question 9

3 pts

A surface in space is defined by the equation $x^2 - y^2 + z^2 + 5 = 0$. Which one of these is true?

Cross SECTIONS ARE
HYPERBOLAS, CIRCLES,
HYPERBOLAS.

- The surface is a hyperboloid of two sheets.
- The surface is a hyperboloid on one sheet.
- The surface is a cone.
- The surface is a sphere.

Fix y = k: $x^2 + z^2 = k^2 - 5$

4 No CIRCLE IF

K IS SMALL

Question 10

6 pts

Compute the principal unit tangent vector at $t=\pi/2$.

$$ec{r}(t) = \sin(2t) \; \hat{\imath} + 2\cos(t) \; \hat{\jmath} + t \, \hat{k}$$

$$egin{aligned} igwedge & -rac{2}{3}\,\hat{\imath} - rac{2}{3}\,\hat{\jmath} + rac{1}{3}\,\hat{k} \ & \odot rac{2}{3}\,\hat{\imath} + rac{2}{3}\,\hat{\jmath} - rac{1}{3}\,\hat{k} \ & \odot -rac{1}{\sqrt{6}}\,\hat{\imath} - rac{2}{\sqrt{6}}\,\hat{\jmath} + rac{1}{\sqrt{6}}\,\hat{k} \end{aligned}$$

 $\bigcirc \ rac{1}{\sqrt{6}} \ \hat{\imath} + rac{2}{\sqrt{6}} \ \hat{\jmath} + rac{1}{\sqrt{6}} \ \hat{k}$

$$\frac{\hat{\Gamma}(\frac{\pi}{2})}{\|\hat{\Gamma}'(\frac{\pi}{2})\|} = -\frac{3}{3}\hat{c} - \frac{3}{3}\hat{c} + \frac{1}{3}\hat{k}$$

Not saved Submit Quiz