Math 233 - Final Exam B Name _Key
May 12, 2022 J Score

Show all work to receive full credit. Each problem is worth 5 points—up to 2 points
for the answer and up to 3 points for the supporting work or explanation. Place your final
answer in the box provided.

1. A partlcle is moved from the point A (0,2,1) to the point B(3,1,6) by applying the
force F = 43 + i+ 3k Find the projection of F' onto AB.
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2. Find the volume of the parallelepiped determined by the vectors @ = 7 — j + + 2k,
T=i4+2j+k, and @ = j— 2k. :
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3. The line L; has symmetric equations
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The line L, is parallel to L; and passes through the point (1,2,—-3). Find a set of
parametric equations for Ls. )
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4. Let G(z,y,z) = \/x2 + y% — z. Describe the level caeve G(z,y,2) = 1.
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5. Find the limit or show that it does not exist: z* — 2y /o Mo e wer .
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6. The temperature at a point in a solid is given by
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Use differentials to estimate the change in temperature from the point (1,1,1) to the
point (1.05, —0.98,1.02).
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7. Find an equation of the plane tangent to graph of sin(zz) — 4 cos(yz) = 4
at the point (7, 1).
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8. On a certain mountain, the elevation z above the point (z,y) is given by
z = 2000 — 222 — 42,

where the coordinates are measured in meters. Assume that the positive z-axis points
east, and the positive y-axis points north. A climber at the point (—20,5,1100) uses

a compass reading to walk northeast. Will the climber ascend or descend? At what
rate? \
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9. Find the critical point(s) of f(z,y) = 322 —2zy+y* —8y. Then use the second partials
test to classify your critical point(s).
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10. Let R be the region in the first quadrant bounded by graphs of y = 2z; y = z, and
y = 4. Write the double integral as an iterated integral and evaluate.
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11. The first octant space region under the cone z = /22 + y? and above the
circle y? = 2z — z? has volume given by
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Convert this integral to an iterated integral in polar coordinates. Do not evaluate.
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12. Evaluate the line integral / ﬁ(x,y) - d7, where f(w, y) = —yi + zj and C is the path
c
along y? = 3z from (3,3) to (0,0).
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