<u>Math 233 - Final Exam B</u> May 12, 2022

Name <u>key</u> Score

Show all work to receive full credit. Each problem is worth 5 points—up to 2 points for the answer and up to 3 points for the supporting work or explanation. Place your final answer in the box provided.

1. A particle is moved from the point A(0,2,1) to the point B(3,1,6) by applying the force $\vec{F} = 4\hat{\imath} + \hat{\jmath} + 3\hat{k}$. Find the projection of \vec{F} onto \vec{AB} .

$$\overrightarrow{AB} = 3\hat{c} - \hat{J} + 5\hat{k}$$

$$Proj_{\overrightarrow{AB}} \overrightarrow{F} = \frac{\overrightarrow{F} \cdot \overrightarrow{AB}}{\overrightarrow{AB} \cdot \overrightarrow{AB}} \overrightarrow{AB} = \frac{12 - 1 + 15}{9 + 1 + 25} \overrightarrow{AB} = \frac{26}{35} \overrightarrow{AB}$$

$$\frac{26}{35}(32-3+5k)$$

2. Find the volume of the parallelepiped determined by the vectors $\vec{u} = \hat{\imath} - \hat{\jmath} + 2\hat{k}$, $\vec{v} = \hat{\imath} + 2\hat{\jmath} + \hat{k}$, and $\vec{w} = \hat{\jmath} - 2\hat{k}$.

Volume =
$$\begin{vmatrix} 1 & -1 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & -2 \end{vmatrix} = (1)(-4-1) - (-1)(-2-0) + (3)(1-0)$$

= $-5-2+2=-5$

7

3. The line L_1 has symmetric equations

$$\frac{x-3}{2} = \frac{2-y}{3} = \frac{z}{7}.$$

The line L_2 is parallel to L_1 and passes through the point (1, 2, -3). Find a set of parametric equations for L_2 .

$$\vec{\nabla} = Direction OF L_1 = \partial \hat{c} - 3\hat{j} + 7\hat{k}$$

$$X = 1 + 2t$$
, $Y = 2 - 3t$, $Z = -3 + 7t$

4. Let
$$G(x,y,z) = \sqrt{x^2 + y^2 - z}$$
. Describe the level curve $G(x,y,z) = 1$.

SURFACE

$$\sqrt{x^2 + y^2 - 7} = 1$$

(1-2000)

$$\Rightarrow X^{2}+y^{2}-Z=$$

$$\Rightarrow Z=X^{2}+y^{2}-$$

CIRCULAR PARABOLOID WITH VERTEX AT (0,0,-1) OPENING UP THE Z-AXIS.

$$\lim_{(x,y)\to(0,0)}\frac{x^2-xy}{\sqrt{x}-\sqrt{y}} \qquad \text{Olong work}$$

$$\frac{1}{(x,y)} \Rightarrow (0,0) \qquad \frac{x(x-y)}{\sqrt{x}-\sqrt{y}} = \frac{1}{(x,y)} \Rightarrow (0,0) \qquad \frac{x(\sqrt{x}+\sqrt{y})}{\sqrt{x}+\sqrt{y}}$$

$$= \lim_{(x,y)} \frac{x(\sqrt{x}+\sqrt{y})}{x(\sqrt{x}+\sqrt{y})} = 0$$

$$(x,y) \Rightarrow (0,0) \qquad (x/\sqrt{x}+\sqrt{y}) = 0$$

 \bigcirc

6. The temperature at a point in a solid is given by

$$T(x, y, z) = \frac{xyz}{1 + x^2 + y^2 + z^2}$$

Use differentials to estimate the change in temperature from the point (1,1,1) to the point (1.05, -0.98, 1.02).

$$T_{x}(x,y,z) = \frac{(1+x^{2}+y^{3}+z^{3})(yz) - (xyz)(2x)}{(1+x^{2}+y^{3}+z^{3})^{2}} T_{x}(1,1,1) = \frac{2}{16} = \frac{1}{8}$$

$$T_y(1,1,1) = T_z(1,1,1) = \frac{1}{8}$$
 (Symmetry IN ROLES OF VARIABLES!)

$$\Delta T \approx \frac{1}{8} \Delta x + \frac{1}{8} \Delta y + \frac{1}{8} \Delta z = \frac{1}{8} (0.05 - 1.98 + 0.0a)$$

$$= \frac{-1.91}{8} = -0.23875$$

$$\Delta T \approx \frac{-1.91}{8} = -0.33875$$

7. Find an equation of the plane tangent to graph of $\sin(xz) - 4\cos(yz) = 4$ at the point $(\pi, \pi, 1)$.

$$F(x,y,z) = \sin(xz) - 4\cos(yz)$$
Our surface is the Level surface $F(x,y,z) = 4$

$$\vec{\nabla} F(x,y,z) = Z\cos(xz)\hat{i} + 4Z\sin(yz)\hat{j} + (x\cos(xz) + 4y\sin(yz))\hat{k}$$

$$\vec{\nabla} = \vec{\nabla} F(\pi,\pi,1) = -\hat{i} + 0\hat{j} + (-\pi)\hat{k}$$

$$Tangent plane: -(x-\pi) + (-\pi)(z-1) = 0$$

$$-x+\pi - \pi z + \pi = 0$$

$$x + \pi z = 3\pi$$

8. On a certain mountain, the elevation z above the point (x, y) is given by

$$z = 2000 - 2x^2 - 4y^2,$$

where the coordinates are measured in meters. Assume that the positive x-axis points east, and the positive y-axis points north. A climber at the point (-20, 5, 1100) uses a compass reading to walk northeast. Will the climber ascend or descend? At what rate?

$$\overrightarrow{\nabla} z = -4x^2 - 8y^2$$

$$\overrightarrow{\nabla} z = -4x^2 - 8y^2$$

$$\overrightarrow{\nabla} z = -4x^2 - 8y^2$$

$$= \frac{\sqrt{3}}{a}^2 + \frac{\sqrt{3}}{a}^2$$

$$= \frac{\sqrt{3}}{a}^2 + \frac{\sqrt{3}}{a}^2$$

9. Find the critical point(s) of $f(x,y) = 3x^2 - 2xy + y^2 - 8y$. Then use the second partials test to classify your critical point(s).

$$f_{x}(x,y) = 6x - 2y = 0$$

 $f_{y}(x,y) = -2x + 2y - 8 = 0$
 $4x - 8 = 0$.
 $x = 2$
 $y = 6$

$$D = \begin{vmatrix} -2 & -3 \\ -3 & -3 \end{vmatrix} = 19 - 4 = 8$$

$$D(a,6) > 0$$
 AND $f_{xx}(a,6) > 0$
 $\Rightarrow f(a,6) = -a4$ is A

10. Let R be the region in the first quadrant bounded by graphs of y = 2x, y = x, and y = 4. Write the double integral as an iterated integral and evaluate.

$$\lambda_3 + \lambda_3 = 3\lambda$$

$$\lambda_3 = 3\lambda \cos \theta$$

11. The first octant space region under the cone $z = \sqrt{x^2 + y^2}$ and above the circle $y^2 = 2x - x^2$ has volume given by

$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} \, dy \, dx.$$

Convert this integral to an iterated integral in polar coordinates. Do not evaluate.

12. Evaluate the line integral $\int_C \vec{F}(x,y) \cdot d\vec{r}$, where $\vec{F}(x,y) = -y\hat{\imath} + x\hat{\jmath}$ and C is the path along $y^2 = 3x$ from (3,3) to (0,0).

$$\int_{C}^{-y} dx + x dy$$

$$= \int_{y=3}^{y=0} -y(\frac{2y}{3})dy + \frac{y^{2}}{3}dy = \int_{3}^{0} -\frac{y^{3}}{3}dy = \int_{0}^{3}$$

$$3$$