\qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (8 points) The vector \vec{w} lies in the $x y$-plane, has magnitude 8 , and makes a 120° angle with the positive x-axis. Find the projection of \vec{w} onto $\vec{v}=-10 \hat{\imath}+2 \hat{\jmath}$.
2. (6 points) The figure below shows the vectors \vec{u} and \vec{v}. Sketch and label the vectors $\vec{u}+\vec{v}, \vec{u}-\vec{v}$, and $-\frac{3}{2} \vec{v}$.

3. (6 points) Show that the points $R(14,39,3), S(5,-3,0)$, and $T(-1,-31,-2)$ are collinear.
4. (6 points) Determine the measure of the angle that $\vec{w}=\sqrt{2} \hat{\imath}+3 \hat{\jmath}-\sqrt{7} \hat{k}$ makes with the positive y-axis. Write your answer in degrees.
5. (9 points) Let $\vec{v}=\hat{\imath}+\hat{\jmath}-7 \hat{k}$ and $\vec{w}=-5 \hat{\imath}+2 \hat{\jmath}+9 \hat{k}$. Show that $\vec{v} \times \vec{w}$ is orthogonal to $2 \vec{v}+\vec{w}$.
6. (9 points) Consider the line in space that passes through the points $P(5,-2,1)$ and $Q(-6,3,-5)$.
(a) Find symmetric equations for the line.
(b) Find a set of parametric equations for the segment $\overline{P Q}$.
(c) Find the midpoint of the segment $\overline{P Q}$. Referring to part (b), what value of your parameter coincides the midpoint?
7. (10 points) Find an equation of the plane that contains the point $P(2,4,-1)$ and all points on the line ℓ. Symmetric equations for ℓ are shown below.

$$
\text { Line } \ell: \quad \frac{x-1}{2}=y+4=\frac{z-5}{2}
$$

8. (10 points) If P is a point on the line that has the direction of \vec{v}, then the distance from the line to a point Q is given by

$$
D=\frac{\|\overrightarrow{P Q} \times \vec{v}\|}{\|\vec{v}\|}
$$

Find the distance from the origin to the line with parametric equations

$$
x=1+t, \quad y=3+t, \quad z=5+4 t .
$$

9. (6 points) Determine the measure of the angle between the planes. Write your answer in degrees rounded to the nearest integer.

$$
x-3 y+6 z=4, \quad 5 x+y-z=4
$$

10. (8 points) Consider the vector-valued function $\vec{r}(t)=2 t \hat{\imath}-t^{2} \hat{\jmath}$.
(a) Sketch the graph of $\vec{r}(t)$. Show or describe the orientation of the curve.

(b) Compute $\|\vec{r}(t)\|$.
(c) Find a (nonzero) vector-valued function that is orthogonal to $\vec{r}(t)$ for every real number t.
(d) Describe the graph of the vector-valued function $\vec{r}(t)=2 t \hat{\imath}-t^{2} \hat{\jmath}+t \hat{k}$.
11. (8 points) Let $\vec{r}(t)=\frac{e^{t}-1}{t} \hat{\imath}+\frac{\sin t}{t} \hat{\jmath}+\sin (\pi t) \hat{k}$.
(a) Determine the domain of \vec{r}.
(b) Compute $\vec{r}(4)$.
(c) Compute $\lim _{t \rightarrow 1} \vec{r}(t)$.
(d) Compute $\lim _{t \rightarrow 0} \vec{r}(t)$.

The following problem makes up the take-home portion of the test. This portion of the test is due February 14, 2023. You must work on your own.
12. (14 points) Consider the following planes

$$
P_{1}: 2 x-3 y+8 z=10, \quad P_{2}: x+2 y+4 z=4 .
$$

(a) Show that the planes are not parallel.
(b) Find a set of parametric equations for the line of intersection of the planes.
(c) Find the distance from the point $R(9,1,-3)$ to the plane P_{1}.
(d) Find symmetric equations for the line through $(2,3,4)$ and normal to the plane P_{2}.

