Math 233 - Test 2
 March 9, 2023

Name \qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (6 points) For $t \geq 0$, let $\vec{r}(t)=(\cos t+t \sin t) \hat{\imath}+(\sin t-t \cos t) \hat{\jmath}$. Compute the principal unit tangent vector, $\hat{T}(t)$.
2. (8 points) The velocity vector of a moving particle is given by

$$
\vec{v}(t)=(\cos t) \hat{\imath}+(5 \sin t) \hat{\jmath}+e^{-t} \hat{k} .
$$

Find the position vector if the particle's motion began (at $t=0$) at the point $(2,7,4)$.
3. (8 points) A curve in the $x y$-plane is described by the following parametric equations. Find the curvature function, $\kappa(t)$.

$$
x=\frac{t^{3}}{3}, \quad y=\frac{t^{2}}{2}
$$

4. (12 points) Let $\vec{r}(t)=t \hat{\imath}-\sin 4 t \hat{\jmath}-\cos 4 t \hat{k}$. Starting from $t=0$, find the arc-length parameter, $s(t)$, and then reparameterize \vec{r} in terms of s.

Follow-up: Show that when the function is reparameterized, its derivative has magnitude 1.
5. (10 points) Let $\vec{r}(t)=(2 t+3) \hat{\imath}+\left(t^{2}-1\right) \hat{\jmath}$. Compute the tangential and normal components of acceleration.
6. (8 points) A wire is wrapped around an elliptical steel tube so that the wire has the shape of the graph of

$$
\vec{r}(t)=6 \cos (t) \hat{\imath}+2 \sin (t) \hat{\jmath}+\sqrt{t} \hat{k}, \quad 0 \leq t \leq 36
$$

where \vec{r} is in centimeters. Set up the definite integral that gives the length of the wire. Use your calculator to approximate the value of your integral.

7. (8 points) A baseball, hit 3 feet above the ground, leaves the bat at an angle of 45° and is caught by an outfielder at a height of 3 feet above the ground and 300 feet from home plate. What is the initial speed of the ball? (To receive full credit, you must write and use the vector-valued function $\vec{r}(t)$ that gives the position of the ball at time t. Also ignore air resistance and use $g \approx 32 \mathrm{ft} \mathrm{s}^{-2}$.)
8. (6 points) Suppose a particle moves along the given curve from right to left. Sketch and label each of the following. Make note of the scale.
(a) The principal unit tangent vector at the point of greatest curvature.
(b) A point where the principal unit normal vector does not exist.
(c) The principal unit normal vector at the point where $x=0.7$.
(d) (1 pt extra credit) The circle of curvature at the point where the radius of curvature is least.

9. (10 points) Consider the function $F(x, y)=\sqrt{1+x^{2}-|y|}$.
(a) What is the domain of F ?
(b) Sketch the domain in the $x y$-plane.
(c) Sketch the level curve $F(x, y)=1$.
(d) What is the range of F ?
(e) Compute $F(4,-8)$.
10. (8 points) Identify the graph of the surface in space described by each equation.
(a) $\frac{y}{5}=8 x^{2}+7 z^{2}$
(b) $x^{2}-\sqrt{8}=y^{2}+z^{2}$
(c) $\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$
(d) $x^{2}-y^{2}+z^{2}=0$
11. (6 points) Let $G(x, y, z)=x^{2}+y^{2}+z^{2}$.
(a) Compute $G(-1,2,-3)$.
(b) What are the domain and range of G ?
(c) Describe, in detail, the level surface $G(x, y, z)=9$.
12. (10 points) Compute each limit.
(a) $\lim _{(x, y) \rightarrow(3,3)} \frac{(2 x+y)^{2}-\left(5 y^{2}+4 x y\right)}{x-y}$
(b) $\lim _{(x, y) \rightarrow(2,1)} \frac{x y^{2}-2 y^{2}}{\sqrt{x}-\sqrt{2}}$

