Math 233 - Test 3
 April 13, 2023

Name \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (14 points) Use the two-path test to show that each limit fails to exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y+y^{3}}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(1,0)} \frac{(x-1) y^{2}}{(x-1)^{3}+y^{4}}$
2. (2 points) If f is continuous at $\left(x_{0}, y_{0}\right)$, then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=$ \qquad -
3. (8 points) Let $f(x, y)=\frac{x y}{x-y}$. Evaluate f_{x} and f_{y} at the point $(2,-2)$.
4. (8 points) Show that $z=e^{x} \sin y$ satisfies the equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$.
5. (2 points) Suppose f is defined on an open region in \mathbb{R}^{2}. We would expect $f_{x y}=f_{y x}$ as long as $f_{x y}$ and $f_{y x}$ are \qquad .
6. (8 points) Let $z=\sqrt{7-x^{2}+y^{3}}$. Use differentials to estimate the change in z as (x, y) moves from $(2,1)$ to $(2.01,0.97)$.
7. (8 points) Find the linearization of $f(x, y, z)=\tan ^{-1}\left(x^{2}+6 y+4 z\right)$ at $(x, y, z)=(1,0,0)$. Then use your linearization to approximate $f(0.9,0.1,0.1)$.
8. (8 points) Suppose θ is implicitly defined as a function of x and y by the equation $y-x \tan \theta=0$. Determine $\partial \theta / \partial x$ and $\partial \theta / \partial y$.
9. (8 points) Let $w=x y \cos z$, where $x=t, y=t^{2}$, and $z=\sin ^{-1} t$. Use the appropriate chain rule to find a formula for $d w / d t$.
10. (2 points) At any point where f is differentiable, the directional derivative is greatest in the direction of the \qquad .
11. (8 points) Let $f(x, y, z)=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$. Determine a unit vector in the direction of the maximum increase from the point $(5,-5,5)$.
12. (8 points) Let $g(x, y)=x^{2}+2 x y-4 y^{2}+4 x-6 y+4$. Determine all points for which $\nabla g(x, y)=\overrightarrow{0}$.
13. (2 points) Suppose $f(x, y)$ is a differentiable on $\mathbb{R}^{2} . \nabla f\left(x_{0}, y_{0}\right)$ is normal to the $\underline{\longrightarrow}$ passing through $\left(x_{0}, y_{0}\right)$.
14. (14 points) Consider the surface described by the equation $4 x^{2}-2 y^{2}+z^{2}=12$.
(a) Identify the surface.
(b) Show that the point $(2,2,2)$ is on the surface.
(c) Find a vector normal to the surface at the point $(2,2,2)$.
(d) Find an equation of the plane tangent to the surface at $(2,2,2)$.
(e) Find a set of parametric equations for the line normal to the surface at $(2,2,2)$.
