Name _____

Math 233 - Test 3 April 13, 2023

Score _____

Show all work to receive full credit. Supply explanations where necessary.

1. (14 points) Use the two-path test to show that each limit fails to exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy+y^3}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(1,0)} \frac{(x-1)y^2}{(x-1)^3+y^4}$$

2. (2 points) If f is continuous at (x_0, y_0) , then $\lim_{(x,y)\to(x_0,y_0)} f(x,y) =$ ______.

3. (8 points) Let $f(x,y) = \frac{xy}{x-y}$. Evaluate f_x and f_y at the point (2,-2).

4. (8 points) Show that $z = e^x \sin y$ satisfies the equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$

5. (2 points) Suppose f is defined on an open region in \mathbb{R}^2 . We would expect $f_{xy} = f_{yx}$ as long as f_{xy} and f_{yx} are ______.

6. (8 points) Let $z = \sqrt{7 - x^2 + y^3}$. Use differentials to estimate the change in z as (x, y) moves from (2, 1) to (2.01, 0.97).

7. (8 points) Find the linearization of $f(x, y, z) = \tan^{-1}(x^2+6y+4z)$ at (x, y, z) = (1, 0, 0). Then use your linearization to approximate f(0.9, 0.1, 0.1). 8. (8 points) Suppose θ is implicitly defined as a function of x and y by the equation $y - x \tan \theta = 0$. Determine $\partial \theta / \partial x$ and $\partial \theta / \partial y$.

9. (8 points) Let $w = xy \cos z$, where x = t, $y = t^2$, and $z = \sin^{-1} t$. Use the appropriate chain rule to find a formula for dw/dt.

11. (8 points) Let $f(x, y, z) = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$. Determine a unit vector in the direction of the maximum increase from the point (5, -5, 5).

12. (8 points) Let $g(x, y) = x^2 + 2xy - 4y^2 + 4x - 6y + 4$. Determine all points for which $\nabla g(x, y) = \vec{0}$.

13. (2 points) Suppose f(x, y) is a differentiable on \mathbb{R}^2 . $\nabla f(x_0, y_0)$ is normal to the passing through (x_0, y_0) .

- 14. (14 points) Consider the surface described by the equation 4x² 2y² + z² = 12.
 (a) Identify the surface.
 - (b) Show that the point (2, 2, 2) is on the surface.
 - (c) Find a vector normal to the surface at the point (2, 2, 2).

(d) Find an equation of the plane tangent to the surface at (2, 2, 2).

(e) Find a set of parametric equations for the line normal to the surface at (2, 2, 2).