\qquad
\qquad

Show all work to receive full credit. Supply explanations where necessary. This portion of the test is due May 11. You must work individually.

1. (10 points) Let C be the closed curve in the plane made up of three line segments: from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(0,1)$, and from $(0,1)$ to $(0,0)$. According to Green's theorem,

$$
\int_{C} x^{2} y^{3} d x+x^{2} y d y=\iint_{T}\left(2 x y-3 x^{2} y^{2}\right) d A
$$

where T is the triangular region inside the closed curve C. Evaluate the double integral.
2. (10 points) Let $\vec{F}(x, y, z)=z^{2} \hat{\imath}+2 y \hat{\jmath}+2 x z \hat{k}$. Consider the line integral

$$
\int_{C} \vec{F}(x, y, z) \cdot d \vec{r} .
$$

(a) Evaluate the line integral when C is the line segment from $(0,0,0)$ to $(1,1,2)$.
(b) Evaluate the line integral when C is the graph of $\vec{r}(t)=t \hat{\imath}+t^{2} \hat{\jmath}+2 t^{3} \hat{k}$ from $(0,0,0)$ to $(1,1,2)$.
(c) Let $f(x, y, z)=x z^{2}+y^{2}+3$. Show that $\nabla f(x, y, z)=\vec{F}(x, y, z)$.
(d) Using the function f from part (c), compute $f(1,1,2)-f(0,0,0)$.

