Math 233 - Final Exam A Name

Score _____

May 9, 2023

Show all work to receive full credit. Supply explanations where necessary. This portion of the test is due May 11. You must work individually.

1. (10 points) Let C be the closed curve in the plane made up of three line segments: from (0,0) to (1,0), from (1,0) to (0,1), and from (0,1) to (0,0). According to Green's theorem,

$$\int_C x^2 y^3 \, dx + x^2 y \, dy = \iint_T (2xy - 3x^2 y^2) \, dA,$$

where T is the triangular region inside the closed curve C. Evaluate the double integral.

2. (10 points) Let $\vec{F}(x, y, z) = z^2 \hat{i} + 2y \hat{j} + 2xz \hat{k}$. Consider the line integral

$$\int_C \vec{F}(x,y,z) \cdot d\vec{r}.$$

(a) Evaluate the line integral when C is the line segment from (0,0,0) to (1,1,2).

(b) Evaluate the line integral when C is the graph of $\vec{r}(t) = t \hat{i} + t^2 \hat{j} + 2t^3 \hat{k}$ from (0,0,0) to (1,1,2).

(c) Let $f(x, y, z) = xz^2 + y^2 + 3$. Show that $\nabla f(x, y, z) = \vec{F}(x, y, z)$.

(d) Using the function f from part (c), compute f(1, 1, 2) - f(0, 0, 0).