\qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due April 25.

1. Evaluate the iterated integral and sketch the region of integration.

$$
\int_{-1}^{1} \int_{-x^{2}}^{x^{2}}\left(x^{2}-y\right) d y d x
$$

2. Reverse the order of integration and evaluate.

$$
\int_{-1}^{0} \int_{-\sqrt{y+1}}^{\sqrt{y+1}} y^{2} d x d y
$$

3. Evaluate the iterated integral by reversing the order of integration.

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y
$$

4. Consider the double integral given below, where R is the plane region bounded by the graphs of $y=\sqrt{x}, y=2$, and $x=0$. Sketch the region R, write the double integral as an iterated integral in both orders, and evaluate either one of your iterated integrals.

$$
\iint_{R} \sin y^{3} d A
$$

5. Let E be the plane region between the graphs of $y=x^{2}$ and $y=x+2$. Sketch the region E and write the iterated integral (in the $d y d x$ order) for the double integral given below. Evaluate your iterated integral and check your answer using a CAS.

$$
\iint_{E}(x y+5) d A
$$

6. Find the area of the upper half of the cardioid $r=1+\cos \theta$.
7. Convert to polar coordinates and evaluate.

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right)^{2} d x d y
$$

8. Evaluate by converting to polar coordinates.

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x
$$

