Math 233 - Assignment 11
April 25, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due May 2.

1. Find the area of the upper half of the cardioid $r=1+\cos \theta$.
2. Convert to polar coordinates and evaluate.

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right)^{2} d x d y
$$

3. Evaluate by converting to polar coordinates.

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x
$$

4. Use a double integral in polar coordinates to find the area of the region in the $x y$-plane inside the circle $x^{2}+y^{2}=2$, above the line $y=1$, and below the line $y \sqrt{3} x$.
5. Use a double integral to find the area of the 1st-quadrant region inside both circles $r=3 \sin \theta$ and $r=\sqrt{3} \cos \theta$.
6. Let S be the space region above the $x y$-plane and under the paraboloid $z=16-x^{2}-y^{2}$. Set up the triple integral(s) necessary to compute the average value of $f(x, y, z)=$ $1+x^{2}+y^{2}+z^{3}$ over S. Use technology to compute the average value.
7. Let T be the tetrahedron in space bounded by the planes $x=0, y=0, z=0$, and $x+2 y+3 z=6$. Set up the triple integrals required to compute the average value of $f(x, y, z)=x+y+z$ on T. Use a computer algebra system to evaluate the integrals and state the average value.
