Math 233 - Assignment 1

January 18, 2024

Name ______ Score _____

Show all work to receive full credit. Supply explanations when necessary. This assignment is due January 25.

- 1. The vector \vec{v} has initial point (-2, 5) and terminal point (3, -1). Find a unit vector in the direction of \vec{v} .
- 2. Find a vector of magnitude 7 whose direction is opposite that of $\langle 3, -4 \rangle$.
- 3. The vector \vec{w} has initial point P(1,1) and terminal point Q. Q lies on the x-axis and left of the initial point. Find the coordinates of Q if $\|\vec{w}\| = \sqrt{10}$.
- 4. Suppose \vec{u} and \vec{v} are nonzero, unequal vectors. Also suppose that $\vec{a} = 2\vec{u} 4\vec{v}$ and $\vec{b} = 3\vec{u} 7\vec{v}$. Find scalars α and β so that $\alpha \vec{a} + \beta \vec{b} = \vec{u} \vec{v}$.
- 5. Let \vec{a} be the standard-position vector with terminal point at (2,5). Let \vec{b} be the vector with initial point at (-1,3) and terminal point (1,0). Compute $\|\vec{a} 3\vec{b} + 14\hat{i} 14\hat{j}\|$.
- 6. Determine the vector \vec{PM} , where M is the midpoint of P(5, 2, -9) and Q(-7, 11, 3).
- 7. Let P(x, y, z) be a point situated an at equal distance from the origin and from the point (4, 1, 2). Show that the coordinates of P satisfy 8x + 2y + 4z = 21.
- 8. Show that the points P(1,0,1), Q(0,1,1), and R(1,1,1) are NOT collinear.
- 9. Determine the vector of magnitude 13 that is parallel to $\vec{v} = 8\hat{i} 7\hat{j} + 12\hat{k}$.
- 10. The vector \vec{v} has magnitude 4 and the direction from (4, 5, -2) to (3, 8, -9). The vector \vec{w} lies in the *xy*-plane, has length $\sqrt{8}$, and makes a 45° angle with the positive *x*-axis. Compute $\vec{v} \vec{w}$.