Math 233 - Assignment 1

January 18, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due January 25.

1. The vector \vec{v} has initial point $(-2,5)$ and terminal point $(3,-1)$. Find a unit vector in the direction of \vec{v}.
2. Find a vector of magnitude 7 whose direction is opposite that of $\langle 3,-4\rangle$.
3. The vector \vec{w} has initial point $P(1,1)$ and terminal point $Q . Q$ lies on the x-axis and left of the initial point. Find the coordinates of Q if $\|\vec{w}\|=\sqrt{10}$.
4. Suppose \vec{u} and \vec{v} are nonzero, unequal vectors. Also suppose that $\vec{a}=2 \vec{u}-4 \vec{v}$ and $\vec{b}=3 \vec{u}-7 \vec{v}$. Find scalars α and β so that $\alpha \vec{a}+\beta \vec{b}=\vec{u}-\vec{v}$.
5. Let \vec{a} be the standard-position vector with terminal point at $(2,5)$. Let \vec{b} be the vector with initial point at $(-1,3)$ and terminal point $(1,0)$. Compute $\|\vec{a}-3 \vec{b}+14 \hat{\imath}-14 \hat{\jmath}\|$.
6. Determine the vector $P \vec{M}$, where M is the midpoint of $P(5,2,-9)$ and $Q(-7,11,3)$.
7. Let $P(x, y, z)$ be a point situated an at equal distance from the origin and from the point $(4,1,2)$. Show that the coordinates of P satisfy $8 x+2 y+4 z=21$.
8. Show that the points $P(1,0,1), Q(0,1,1)$, and $R(1,1,1)$ are NOT collinear.
9. Determine the vector of magnitude 13 that is parallel to $\vec{v}=8 \hat{\imath}-7 \hat{\jmath}+12 \hat{k}$.
10. The vector \vec{v} has magnitude 4 and the direction from $(4,5,-2)$ to $(3,8,-9)$. The vector \vec{w} lies in the $x y$-plane, has length $\sqrt{8}$, and makes a 45° angle with the positive x-axis. Compute $\vec{v}-\vec{w}$.
