Math 233 - Assignment 2

January 25, 2024

Name ______ Score _____

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 1.

- 1. Let $\vec{v} = 7\hat{i} 8\hat{j} + 3\hat{k}$ and $\vec{w} = -5\hat{i} + 6\hat{k}$. Find the measure of the angle between \vec{v} and \vec{w} . Write your final answer in degrees, rounded to the nearest thousandth.
- 2. Let $\vec{v} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{u} = 4\hat{i} + 2\hat{j} + 6\hat{k}$. Now let $\vec{w} = \text{proj}_{\vec{v}} \vec{u}$ and $\vec{x} = \vec{u} \vec{w}$. Compute \vec{w} and \vec{x} and show that they are orthogonal.
- 3. If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, must it be true that $\vec{v} = \vec{w}$?
- 4. Suppose \vec{u} is orthogonal to both \vec{v} and \vec{w} . Prove that \vec{u} is orthogonal to $5\vec{v} 3\vec{w}$.
- 5. Find the measure of the angle that $\vec{u} = -8\hat{i} + 7\hat{j} + 2\hat{k}$ makes with the positive *y*-axis. Write your final answer in degrees, rounded to the nearest thousandth.
- 6. Find a unit vector that is orthogonal to both $\vec{v} = 4\hat{i} + 3\hat{j} \hat{k}$ and $\vec{u} = \hat{i} 2\hat{j} + 3\hat{k}$.
- 7. Find the area of the $\triangle ABC$, where A(1, 2, 3), B(0, -9, -4), and C(-5, 8, -3).
- 8. Find parametric and symmetric equations for the line in space that passes through the points P(8, 9, -4) and Q(6, -2, -4).

9. A line is described by the equations $\frac{x+5}{3} = 2y - 4 = -\frac{z}{6}$. Find a point on the line and a vector that is parallel to the line. Then write parametric equations for the line.