Math 233 - Assignment 2

January 25, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 1.

1. Let $\vec{v}=7 \hat{\imath}-8 \hat{\jmath}+3 \hat{k}$ and $\vec{w}=-5 \hat{\imath}+6 \hat{k}$. Find the measure of the angle between \vec{v} and \vec{w}. Write your final answer in degrees, rounded to the nearest thousandth.
2. Let $\vec{v}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $\vec{u}=4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$. Now let $\vec{w}=\operatorname{proj}_{\vec{v}} \vec{u}$ and $\vec{x}=\vec{u}-\vec{w}$. Compute \vec{w} and \vec{x} and show that they are orthogonal.
3. If $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, must it be true that $\vec{v}=\vec{w}$?
4. Suppose \vec{u} is orthogonal to both \vec{v} and \vec{w}. Prove that \vec{u} is orthogonal to $5 \vec{v}-3 \vec{w}$.
5. Find the measure of the angle that $\vec{u}=-8 \hat{\imath}+7 \hat{\jmath}+2 \hat{k}$ makes with the positive y-axis. Write your final answer in degrees, rounded to the nearest thousandth.
6. Find a unit vector that is orthogonal to both $\vec{v}=4 \hat{\imath}+3 \hat{\jmath}-\hat{k}$ and $\vec{u}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$.
7. Find the area of the $\triangle A B C$, where $A(1,2,3), B(0,-9,-4)$, and $C(-5,8,-3)$.
8. Find parametric and symmetric equations for the line in space that passes through the points $P(8,9,-4)$ and $Q(6,-2,-4)$.
9. A line is described by the equations $\frac{x+5}{3}=2 y-4=-\frac{z}{6}$.

Find a point on the line and a vector that is parallel to the line. Then write parametric equations for the line.

