Math 233 - Assignment 2

Name KEY \qquad
January 25, 2024

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 1.

1. Let $\vec{v}=7 \hat{\imath}-8 \hat{\jmath}+3 \hat{k}$ and $\vec{w}=-5 \hat{\imath}+6 \hat{k}$. Find the measure of the angle between \vec{v} and \vec{w}. Write your final answer in degrees, rounded to the nearest thousandth.

Solution

The angle θ satifies $\cos \theta=\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}=\frac{-35+18}{\sqrt{49+64+9} \sqrt{25+36}}=-\frac{17}{\sqrt{7442}}$. It follows that $\theta \approx 101.365^{\circ}$.
2. Let $\vec{v}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $\vec{u}=4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$. Now let $\vec{w}=\operatorname{proj}_{\vec{v}} \vec{u}$ and $\vec{x}=\vec{u}-\vec{w}$. Compute \vec{w} and \vec{x} and show that they are orthogonal.

Solution
$\vec{w}=\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}=\frac{18}{9} \vec{v}=2 \vec{v}=4 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$. It follows that $\vec{x}=\vec{u}-\vec{w}=4 \hat{\jmath}+2 \hat{k}$.
Finally, we show that \vec{w} and \vec{x} are orthogonal: $\vec{w} \cdot \vec{x}=0-8+8=0$.
3. If $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, must it be true that $\vec{v}=\vec{w}$?

Solution

No way! If $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, then $\vec{u} \cdot \vec{v}-\vec{u} \cdot \vec{w}=0$. This simply implies that $\vec{u} \cdot(\vec{v}-\vec{w})=0$. Therefore, \vec{v} and \vec{w} can be any vectors as long as their difference is orthogonal to \vec{u}.

For example, let $\vec{u}=5 \hat{\imath}+3 \hat{\jmath}+8 \hat{k}, \vec{v}=8 \hat{\jmath}$, and $\vec{w}=3 \hat{k}$.
4. Suppose \vec{u} is orthogonal to both \vec{v} and \vec{w}. Prove that \vec{u} is orthogonal to $5 \vec{v}-3 \vec{w}$.

Solution

We know that $\vec{u} \cdot \vec{v}=0$ and $\vec{u} \cdot \vec{w}=0$. It follows that $\vec{u} \cdot(5 \vec{v}-3 \vec{w})=5 \vec{u} \cdot \vec{v}-3 \vec{u} \cdot \vec{w}=$ $5(0)-3(0)=0$.
5. Find the measure of the angle that $\vec{u}=-8 \hat{\imath}+7 \hat{\jmath}+2 \hat{k}$ makes with the positive y-axis. Write your final answer in degrees, rounded to the nearest thousandth.

Solution

The angle β satifies $\cos \beta=\frac{\vec{u} \cdot \hat{\jmath}}{\|\vec{u}\|\|\hat{\jmath}\|}=\frac{7}{\sqrt{64+49+4} \sqrt{1}}=\frac{7}{\sqrt{117}}$. It follows that $\beta \approx 49.673^{\circ}$.
6. Find a unit vector that is orthogonal to both $\vec{v}=4 \hat{\imath}+3 \hat{\jmath}-\hat{k}$ and $\vec{u}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$.

Solution

$\vec{v} \times \vec{u}=7 \hat{\imath}-13 \hat{\jmath}-11 \hat{k}$, and $\|\vec{v} \times \vec{u}\|=\sqrt{339}$.
$\frac{\vec{v} \times \vec{u}}{\|\vec{v} \times \vec{u}\|}=\frac{7}{\sqrt{339}} \hat{\imath}-\frac{13}{\sqrt{339}} \hat{\jmath}-\frac{11}{\sqrt{339}} \hat{k}$.
7. Find the area of the $\triangle A B C$, where $A(1,2,3), B(0,-9,-4)$, and $C(-5,8,-3)$.

Solution

Area $=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|$
$\overrightarrow{A B}=-\hat{\imath}-11 \hat{\jmath}-7 \hat{k}$ and $\overrightarrow{A C}=-6 \hat{\imath}+6 \hat{\jmath}-6 \hat{k}$.
$\overrightarrow{A B} \times \overrightarrow{A C}=108 \hat{\imath}+36 \hat{\jmath}-72 \hat{k}$ and $\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{18144}$. It follows that the area is $\frac{1}{2} \sqrt{18144} \approx 67.35$ units 2.
8. Find parametric and symmetric equations for the line in space that passes through the points $P(8,9,-4)$ and $Q(6,-2,-4)$.

Solution

Let's use point $P(8,9,-4)$ and the direction vector $\vec{v}=\overrightarrow{P Q}=-2 \hat{\imath}-11 \hat{\jmath}+0 \hat{k}$.
Parametric equations: $\quad x=-2 t+8, \quad y=-11 t+9, \quad z=-4$
Symmetric equations: $\quad \frac{x-8}{-2}=\frac{y-9}{-11}, \quad z=-4$
9. A line is described by the equations $\frac{x+5}{3}=2 y-4=-\frac{z}{6}$.

Find a point on the line and a vector that is parallel to the line. Then write parametric equations for the line.

Solution

Rewrite the symmetric equations: $\quad \frac{x+5}{3}=\frac{y-2}{1 / 2}=\frac{z-0}{-6}$.
Now we can read the point $(-5,2,0)$ and direction vector $\vec{v}=3 \hat{\imath}+\frac{1}{2} \hat{\jmath}-6 \hat{k}$.
Then parametric equations could be $\quad x=3 t-5, \quad y=\frac{1}{2} t+2, \quad z=-6 t$.

