Math 233 - Assignment 2

|--|

January 25, 2024

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 1.

1. Let $\vec{v} = 7\hat{\imath} - 8\hat{\jmath} + 3\hat{k}$ and $\vec{w} = -5\hat{\imath} + 6\hat{k}$. Find the measure of the angle between \vec{v} and \vec{w} . Write your final answer in degrees, rounded to the nearest thousandth.

Solution

The angle θ satisfies $\cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|} = \frac{-35 + 18}{\sqrt{49 + 64 + 9}\sqrt{25 + 36}} = -\frac{17}{\sqrt{7442}}$. It follows that $\theta \approx 101.365^{\circ}$.

2. Let $\vec{v} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{u} = 4\hat{i} + 2\hat{j} + 6\hat{k}$. Now let $\vec{w} = \text{proj}_{\vec{v}} \vec{u}$ and $\vec{x} = \vec{u} - \vec{w}$. Compute \vec{w} and \vec{x} and show that they are orthogonal.

Solution

$$\vec{w} = \text{proj}_{\vec{v}} \, \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} = \frac{18}{9} \, \vec{v} = 2\vec{v} = 4\hat{\imath} - 2\hat{\jmath} + 4\hat{k}. \text{ It follows that } \vec{x} = \vec{u} - \vec{w} = 4\hat{\jmath} + 2\hat{k}.$$

Finally, we show that \vec{w} and \vec{x} are orthogonal: $\vec{w} \cdot \vec{x} = 0 - 8 + 8 = 0$.

3. If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, must it be true that $\vec{v} = \vec{w}$?

Solution

No way! If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, then $\vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{w} = 0$. This simply implies that $\vec{u} \cdot (\vec{v} - \vec{w}) = 0$. Therefore, \vec{v} and \vec{w} can be any vectors as long as their difference is orthogonal to \vec{u} .

For example, let $\vec{u} = 5\hat{\imath} + 3\hat{\jmath} + 8\hat{k}$, $\vec{v} = 8\hat{\jmath}$, and $\vec{w} = 3\hat{k}$.

4. Suppose \vec{u} is orthogonal to both \vec{v} and \vec{w} . Prove that \vec{u} is orthogonal to $5\vec{v} - 3\vec{w}$.

Solution

We know that $\vec{u} \cdot \vec{v} = 0$ and $\vec{u} \cdot \vec{w} = 0$. It follows that $\vec{u} \cdot (5\vec{v} - 3\vec{w}) = 5\vec{u} \cdot \vec{v} - 3\vec{u} \cdot \vec{w} = 5(0) - 3(0) = 0$.

5. Find the measure of the angle that $\vec{u} = -8\hat{i} + 7\hat{j} + 2\hat{k}$ makes with the positive *y*-axis. Write your final answer in degrees, rounded to the nearest thousandth.

Solution

The angle β satisfies $\cos \beta = \frac{\vec{u} \cdot \hat{j}}{\|\vec{u}\| \|\hat{j}\|} = \frac{7}{\sqrt{64 + 49 + 4}\sqrt{1}} = \frac{7}{\sqrt{117}}$. It follows that $\beta \approx 49.673^{\circ}$.

6. Find a unit vector that is orthogonal to both $\vec{v} = 4\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{u} = \hat{i} - 2\hat{j} + 3\hat{k}$.

Solution
$$\vec{v} \times \vec{u} = 7\hat{\imath} - 13\hat{\jmath} - 11\hat{k}$$
, and $\|\vec{v} \times \vec{u}\| = \sqrt{339}$.
 $\frac{\vec{v} \times \vec{u}}{\|\vec{v} \times \vec{u}\|} = \frac{7}{\sqrt{339}}\hat{\imath} - \frac{13}{\sqrt{339}}\hat{\jmath} - \frac{11}{\sqrt{339}}\hat{k}$.

7. Find the area of the $\triangle ABC$, where A(1, 2, 3), B(0, -9, -4), and C(-5, 8, -3).

Solution
Area =
$$\frac{1}{2} \|\vec{AB} \times \vec{AC}\|$$

 $\vec{AB} = -\hat{i} - 11\hat{j} - 7\hat{k}$ and $\vec{AC} = -6\hat{i} + 6\hat{j} - 6\hat{k}$.
 $\vec{AB} \times \vec{AC} = 108\hat{i} + 36\hat{j} - 72\hat{k}$ and $\|\vec{AB} \times \vec{AC}\| = \sqrt{18144}$. It follows that the area is $\frac{1}{2}\sqrt{18144} \approx 67.35$ units².

8. Find parametric and symmetric equations for the line in space that passes through the points P(8, 9, -4) and Q(6, -2, -4).

Solution

Let's use point P(8, 9, -4) and the direction vector $\vec{v} = \vec{PQ} = -2\hat{\imath} - 11\hat{\jmath} + 0\hat{k}$.

Parametric equations: x = -2t + 8, y = -11t + 9, z = -4

Symmetric equations: $\frac{x-8}{-2} = \frac{y-9}{-11}, \quad z = -4$

9. A line is described by the equations $\frac{x+5}{3} = 2y - 4 = -\frac{z}{6}$. Find a point on the line and a vector that is parallel to the line. Then write parametric equations for the line.

Solution

Rewrite the symmetric equations:
$$\frac{x+5}{3} = \frac{y-2}{1/2} = \frac{z-0}{-6}$$

Now we can read the point (-5, 2, 0) and direction vector $\vec{v} = 3\hat{\imath} + \frac{1}{2}\hat{\jmath} - 6\hat{k}$. Then parametric equations could be x = 3t - 5, $y = \frac{1}{2}t + 2$, z = -6t.