Math 233-Assignment 3

February 1, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 8.

1. Find an equation of the plane that passes through the points $P(1,1,-1), Q(2,0,2)$, and $R(0,-2,1)$.
2. Find an equation of the plane that passes through the point $(1,-1,3)$ and is parallel to the plane $3 x+y+z=7$.
3. Find the coordinates of the point P at which the line

$$
\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3}
$$

intersects the plane $3 x+2 y-z=5$.
4. Find the measure of the angle between the planes $-x-2 y+2 z=5$ and $5 x-2 y-z=0$. Write your final answer in degrees rounded to the nearest hundredth.
5. Find parametric equations for the line of intersection of the two planes $-x-2 y+2 z=5$ and $5 x-2 y-z=0$.
6. Find an equation of the plane that passes through $P(1,2,3)$ and $Q(3,2,1)$ and is perpendicular to the plane $4 x-y+2 z=7$. (This problem might be challenging. For a possible solution, let $R(x, y, z)$ be any point in the plane containing P and Q. Then $\overrightarrow{P R} \times \overrightarrow{Q R}$ is orthogonal to the normal vector of the given plane.)
7. Show that the planes are parallel. Then find the distance between them.

$$
\begin{gathered}
2 x-6 y+8 z=5 \\
-x+3 y-4 z=10
\end{gathered}
$$

8. Find the distance from the point $P(8,-3,2)$ to the line

$$
\frac{x-5}{2}=y-4=\frac{z}{7} .
$$

9. Describe, in detail, the graph of the vector-valued function $\vec{r}(t)=(3 t+7) \hat{\imath}+6 t \hat{\jmath}-$ $(5-t) \hat{k}$. Then compute the vector $\hat{T}(t)=\vec{r}^{\prime}(t) /\left\|\vec{r}^{\prime}(t)\right\|$.
10. Consider the vector-valued function $\vec{r}(t)=2 t^{2} \hat{\imath}+(1+3 t) \hat{\jmath}$. Determine an equation in the rectangular coordinates x and y that has the same graph as that of $\vec{r}(t)$.
