## Math 233-Assignment 4

February 15, 2024

Name $\qquad$
Score $\qquad$

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 22.

1. The velocity vector of a moving particle is given by

$$
\vec{v}(t)=(\cos t) \hat{\imath}+(5 \sin t) \hat{\jmath}+e^{-t} \hat{k} .
$$

Find the position vector $\vec{r}(t)$ if the particle's motion began (at $t=0$ ) at the point $(2,7,4)$.
2. For $t \geq 0$, let $\vec{r}(t)=(\cos t+t \sin t) \hat{\imath}+(\sin t-t \cos t) \hat{\jmath}$. Compute the principal unit tangent vector, $\hat{T}(t)$.
3. Let $\vec{r}(t)=\cos 5 t \hat{\imath}-t \hat{\jmath}-\sin 5 t \hat{k}$. Starting from $t=0$, find the arc-length parameter, $s(t)$, and then reparameterize $\vec{r}$ in terms of $s$. Then show that after the function is reparameterized, its derivative has magnitude 1 .
4. Set up the definite integral that gives the length of the graph of

$$
\vec{r}(t)=\left(3 t^{2}+1\right) \hat{\imath}+\left(4 t^{2}-1\right) \hat{\jmath}+4 t^{3} \hat{k}
$$

from $t=0$ to $t=2$. Evaluate your integral by hand. (If you've done everything correctly, your integral should require a simple $u$-substitution.)
5. Let $\vec{r}(t)=\left(t^{2}-t\right) \hat{\imath}+\frac{1}{6}(4 t-1)^{3 / 2} \hat{\jmath}+5 \hat{k}$. Starting from $t=1$, reparameterize $\vec{r}$ in terms of the arc-length parameter $s$.
6. Let $\vec{r}(t)=-\cos 3 t \hat{\imath}-\sin 3 t \hat{\jmath}+4 t \hat{k}$. Compute $\hat{N}(t)$.
7. For $-\pi / 2<x<\pi / 2$, let $f(x)=\ln (\cos x)$. Compute the curvature function and say where the graph of $f$ has its maximum curvature.
8. Find the curvature at the point $P$.

$$
\vec{r}(t)=t \hat{\imath}+t^{2} \hat{\jmath}+\frac{t^{3}}{4} \hat{k}, \quad P(2,4,2)
$$

9. Let $\vec{r}(t)=t \hat{\imath}+\ln (\cos t) \hat{\jmath}+5 \hat{k}$. Compute $\hat{T}(t)$ and $\hat{N}(t)$.
