Math 233 - Assignment 7

March 21, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due March 28.

1. Use differentials to estimate the change in $f(x, y, z)=\ln \sqrt{x^{2}+y^{2}+z^{2}}$ as (x, y, z) changes from $(3,4,12)$ to $(3.04,4.08,11.97)$.
2. Use differentials to estimate the change in $h(x, y, z)=\cos (\pi x y)+x z^{2}$ as (x, y, z) changes from $(-1,-1,-1)$ to $(-0.94,-0.95,-0.93)$.
3. Use the definition of differentiable to show that $f(x, y)=x y-x y^{2}$ is differentiable at any point in \mathbb{R}^{2}.
4. Find the linearization of $f(x, y)=e^{2 y-x}$ at $(1,2)$. Then use your linearization to approximate $f(0.95,2.03)$.
5. Use an appropriate linearization to estimate the value of $(0.94)^{2}(4.03)^{1 / 2}(1.02)^{5}$.
6. Use differentials to estimate the change in $T=x\left(e^{y}+e^{-y}\right)$ when $x=2, y=\ln 2$, $\Delta x=0.1$, and $\Delta y=0.02$. (Notice that the estimated change in T is significantly bigger than the individual changes in x and y.)
7. Find an equation of the plane tangent to the surface $z=9-x^{2}-y^{2}$ at the point $(1,2,4)$.
8. Let $f(x, y)=x^{2} \sin (2 y)$. Find an equation of the plane tangent to the graph of f at the point $(2, \pi / 6)$.
9. Suppose that $w=3 x y+y z$ and that x, y, and z are functions of u and v such that

$$
x=\ln u+\cos v, \quad y=1+u \sin v, \quad z=u v .
$$

Use the appropriate chain rule to find $\partial w / \partial u$ at $(u, v)=(1, \pi)$.
10. Suppose $w=f(x, y)$, where $x=u-v$ and $y=v-u$. Use the chain rule to show that $\frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}=0$.

