Math 233 - Assignment 7

Name ____

March 21, 2024

Score ____

Show all work to receive full credit. Supply explanations when necessary. This assignment is due March 28.

- 1. Use differentials to estimate the change in $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$ as (x, y, z) changes from (3, 4, 12) to (3.04, 4.08, 11.97).
- 2. Use differentials to estimate the change in $h(x, y, z) = \cos(\pi xy) + xz^2$ as (x, y, z) changes from (-1, -1, -1) to (-0.94, -0.95, -0.93).
- 3. Use the definition of **differentiable** to show that $f(x, y) = xy xy^2$ is differentiable at any point in \mathbb{R}^2 .
- 4. Find the linearization of $f(x, y) = e^{2y-x}$ at (1, 2). Then use your linearization to approximate f(0.95, 2.03).
- 5. Use an appropriate linearization to estimate the value of $(0.94)^2(4.03)^{1/2}(1.02)^5$.
- 6. Use differentials to estimate the change in $T = x(e^y + e^{-y})$ when x = 2, $y = \ln 2$, $\Delta x = 0.1$, and $\Delta y = 0.02$. (Notice that the estimated change in T is significantly bigger than the individual changes in x and y.)
- 7. Find an equation of the plane tangent to the surface $z = 9 x^2 y^2$ at the point (1, 2, 4).
- 8. Let $f(x,y) = x^2 \sin(2y)$. Find an equation of the plane tangent to the graph of f at the point $(2, \pi/6)$.
- 9. Suppose that w = 3xy + yz and that x, y, and z are functions of u and v such that

 $x = \ln u + \cos v,$ $y = 1 + u \sin v,$ z = uv.

Use the appropriate chain rule to find $\partial w/\partial u$ at $(u, v) = (1, \pi)$.

10. Suppose w = f(x, y), where x = u - v and y = v - u. Use the chain rule to show that $\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} = 0.$