Math 233 - Assignment 8

March 28, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due April 4.

1. Find $d y / d x$ if $y^{2}-x^{2}-\sin x y=0$.
2. Find $\partial z / \partial x$ and $\partial z / \partial y$ at $(0,0,0)$ if $x^{3}+z^{2}+y e^{x z}+z \cos y=0$.
3. Suppose we would like to convert the differentiable function $w=f(x, y)$ to polar coordinates by using $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Show that

$$
\frac{\partial w}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta
$$

and

$$
\frac{1}{r} \frac{\partial w}{\partial \theta}=-f_{x} \sin \theta+f_{y} \cos \theta
$$

(b) Solve the equations in part (a) for f_{x} and f_{y} in terms of $\partial w / \partial r$ and $\partial w / \partial \theta$.
(c) Show that

$$
\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial w}{\partial \theta}\right)^{2} .
$$

(This expression is called the Laplacian of f.)
4. Find the directional derivative of $g(x, y)=\frac{x-y}{x y+2}$ at the point $(1,-1)$ in the direction of $\vec{v}=12 \hat{\imath}+5 \hat{\jmath}$.
5. Find the gradient vector at $(-1,2,-2): \quad f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}+\ln (x y z)$.
6. Find the gradient vector at the given point. Then sketch the gradient together with the level curve that passes through the point.

$$
f(x, y)=\tan ^{-1} \frac{\sqrt{x}}{y}, \quad(4,-2)
$$

7. The electric voltage in a certain region in space is described by the function $V(x, y, z)=$ $5 x^{2}-3 x y+x y z$. At the point $(3,4,5)$, in what direction is the voltage increasing most rapidly? Give your answer as a unit vector.
8. Find a set of parametric equations for the line normal to the graph of

$$
x^{2}-8 x y z+y^{2}+6 z^{2}=0
$$

at the point $P(1,1,1)$.
9. Find an equation of the plane tangent to the surface $\sin (x z)=4 \cos (y z)$ at the point $(\pi, \pi / 2,1)$.
10. Let $G(x, y, z)=\frac{x}{z}+\frac{z}{y^{2}}$. Find a unit vector in the direction in which G decreases most rapidly at $P(1,2,-2)$. What is the corresponding rate of decrease?

