Math 233 - Test 1
 February 8, 2024

Name \qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (6 points) Determine a vector in 2-dimensional space that is perpendicular to $\vec{u}=3 \hat{\imath}-5 \hat{\jmath}$ and has magnitude 4.
2. (8 points) Referring to the figure below, sketch $\vec{w}+\vec{v}$. Then find the component form of $\vec{w}+\vec{v}$.

3. (3 points) A 3-dimensional rectangular coordinate system is set up in such a way that the positive y and z axes are as indicated below. Describe the direction of the positive x axis, and say how you know.

4. (10 points) Consider the line segment from $P(3,-2,1)$ to $Q(6,-6,-8)$.
(a) Find the midpoint of the line segment.
(b) Find the length of the segment.
(c) Find a set of parametric equations for the line segment.
(d) Find symmetric equations for the line through P and Q.
5. (8 points) Let $\vec{x}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$ and $\vec{y}=3 \hat{\imath}+8 \hat{\jmath}-4 \hat{k}$.
(a) Let \vec{w} be the projection of \vec{y} onto \vec{x}. Compute \vec{w}.
(b) Let $\vec{z}=\vec{y}-\vec{w}$ and compute \vec{z}.
(c) Now compute $\vec{w} \cdot \vec{z}$. What does your answer say about \vec{w} and \vec{z} ?
6. (8 points) Find a vector of magnitude 10 that is orthogonal to both $\vec{a}=\langle 2,4,-1$, and $\vec{b}=\langle 1,2,1\rangle$.
7. (6 points) Let $\vec{w}=\frac{2}{11} \hat{\imath}+\frac{6}{11} \hat{\jmath}+\frac{9}{11} \hat{k}$.
(a) Confirm that \vec{w} is a unit vector.
(b) Show that each component of \vec{w} is the cosine of the angle between \vec{w} and the corresponding coordinate axis.
8. (16 points) Consider the points $A(3,5,-7), B(6,-1,3)$, and $C(-2,-2,8)$.
(a) Show that the points are NOT collinear.
(b) Find the area of $\triangle A B C$.
(c) Find an equation of the plane containing the points A, B, and C.
(d) Find the measure of the angle between your plane in part (c) and the plane $2 x-7 y+6 z=0$. (If you were unable to do part (c), just thoroughly explain how you would find this angle.)
9. (5 points) Find a vector-valued function whose graph is the line described by

$$
x=2 y-6=\frac{7-z}{3} .
$$

10. (8 points) The distance from a line to a point not on the line is given by $\frac{\|\overrightarrow{P Q} \times \vec{v}\|}{\|\vec{v}\|}$, where \vec{v} is a vector parallel to the line, P is a point on the line, and Q is the point not on the line.

Find the distance from the line

$$
x=2 t+7, \quad y=-t-3, \quad z=9
$$

to the point $(5,-4,3)$.
11. (8 points) Let $\vec{r}(t)=\left(\frac{1}{2} t+1\right) \hat{\imath}+\left(3-\frac{1}{4} t^{2}\right) \hat{\jmath}$.
(a) Write the set of parametric equations whose graph is that of $\vec{r}(t)$ Then eliminate the parameter t to obtain an equation in the rectangular coordinates x and y.
(b) Carefully sketch the graph of $\vec{r}(t)$ and draw arrows to show the graph's orientation.

12. (8 points) Let $\vec{r}(t)=\sin 2 t \hat{\imath}+\cos 2 t \hat{\jmath}+t \hat{k}$.
(a) Describe the graph of $\vec{r}(t)$.
(b) Compute $\|\vec{r}(t)\|$.
(c) Find $\vec{r}^{\prime}(t)$.
(d) Show that $\vec{r}(t)$ is orthogonal to $\vec{r}^{\prime}(t)$ only when $t=0$.
13. (6 points) Let $\vec{r}(t)=\frac{t-2}{t^{2}-4} \hat{\imath}+\frac{\sin t}{t} \hat{\jmath}+|t| \hat{k}$.
(a) For which values of t is $\vec{r}(t)$ discontinuous?
(b) Which of those discontinuities are removable? Briefly say how you know.

