Math 233 - Test 3
 April 11, 2024

Name \qquad
Score

Show all work to receive full credit. Supply explanations where necessary.

1. (4 points) Find f_{x}, f_{y}, and f_{z} when $f(x, y, z)=y z \ln \left(x y^{2}\right)$.
2. (6 points) Let $f(x, y)=x \cos (2 y)+e^{y^{3}}$.
(a) Which partial mixed partial derivative is less work to compute, $f_{x y}$ or $f_{y x}$? Why?
(b) Compute whichever mixed partial you said in part (a).
(c) In this problem, would you expect $f_{x y}=f_{y x}$? Why or why not?
3. (4 points) Look carefully at the graph of $z=f(x, y)$ shown below. Use the graph to determine the sign of $f_{x}(1,-1)$ and $f_{y}(1,-1)$. Briefly explain.

4. (10 points) Find the linearization of $f(x, y, z)=\frac{\sin (x y)}{z}$ at the point $(x, y, z)=$ $(\sqrt{\pi} / 2, \sqrt{\pi} / 3, \sqrt{\pi})$. Then use your linearization to approximate $f(0.9,0.6,1.7)$.
5. (6 points) Use differentials to approximate the change in $g(x, y)=\tan ^{-1}\left(x y^{2}\right)$ as (x, y) changes from $(1,1)$ to $(1.02,0.97)$.
6. (4 points) Let $z=x^{2}(y+1)$. Compute the total differential $d z$. Near the point $(1,0)$, is z more sensitive to changes in x or to changes in y ? Explain.
7. (4 points) Suppose $v=f(w, x, y, z)$ is differentiable, and w, x, y, and z are differentiable functions of s and t. Write the formula for the derivative of v with respect to t.
8. (4 points) Use partial derivatives to find $\partial z / \partial y$ at the point $(1,1,1)$.

$$
z^{3}-x y+y z+y^{3}-2=0
$$

9. (4 points) The voltage V in a circuit satisfies $V=I R$, where I is the current and R is the resistance. The voltage is dropping as the battery wears out and the resistor heats up. Find a formula for $d V / d t$, and use it to determine $d I / d t$ when $R=600 \mathrm{ohms}$, $I=0.04 \mathrm{amp}, d R / d t=0.5 \mathrm{ohm} / \mathrm{sec}$, and $d V / d t=-0.01 \mathrm{volt} / \mathrm{sec}$.
10. (8 points) Find a set of parametric equations for the line normal to the surface $z=2 e^{4 x^{2}+2 x y-4 y}$ at the point $(1,2,2)$.
11. (6 points) Find the directional derivative of $g(x, y)=\frac{x-y}{x y+2}$ at the point $(1,-1)$ in the direction of $\vec{v}=12 \hat{\imath}+5 \hat{\jmath}$.
12. (8 points) Let $G(x, y, z)=\frac{x}{z}+\frac{z}{y^{2}}$. Find a unit vector in the direction in which G decreases most rapidly at $P(1,2,-2)$. What is the corresponding rate of decrease?
13. (12 points) Find the critical points of $f(x, y)=y^{3}-3 y x^{2}-3 y^{2}-3 x^{2}+1$. Then use the 2 nd partials test to classify your critical points.
14. (4 points) Suppose you are using the 2 nd partials test and it is inconclusive. Describe two things that you might do in order to help you draw a conclusion.
15. (12 points) Use Lagrange multipliers to find the minimum and maximum values of $f(x, y)=3 x+4 y$ on the circle $x^{2}+y^{2}=1$.
16. (4 points) Refer back to the problem above. Explain how we can be certain that the minimum and maximum values exist even before starting work on the problem.
