Math 233 - Final Exam B Name \<eq
May 9, 2024 “  Score

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) A golf ball is hit from the ground toward a vertical cliff that is 150 m away.

. The ball is launched at a 40° angle with respect to the horizontal, and its initial speed
is 7T0m/s. At what height will the ball strike the cliff? Will the ball ever reach its
maximum possible height? Explam (Use g = 9.81m/s%.)
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2. (10 points) Find each limit or show that it does not exist.
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3. (10 points) Let w = zyz.

(a) Compute the total differential dw.
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(b) Use differentials to estimate the change in w as (z,y, z) changes from (5, 3,2) to
(5.1,3.1,2.1). .
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(c) Your answer is part (b) is an approximation for the volume of the walls of a
s4sonn emptysboxawith inside dimensions 5m by 3m by 2m, - when the:walls are 5cm
- thick. Explain or illustrate this idea.
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4. (10 points) Consider the surface described by the equation z = 2e%*+2oy—4y,

(2) Find an equation of the plane tangent to the surface at the point (1,2,2).
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(b) Find a set of parametnc equatlons for the line normal to the surface at the pomt
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5. (10 pomts) Consider the double integral / / ﬂg_:_c_ dA, where R is the triangular region

in the zy-plane bounded by the z-axis, the line y = z, and the line x = 1. Sketch
the region R, and set up the corresponding iterated integrals with both orders of
integration. Then choose one of your iterated integrals and evaluate it.




6. (10 points) A region in space lies in the first octant (where z,y,z > 0) where it is
bounded by the cylinder y = z —z? and the planes z = 0 and z = y. The volume of the
region is 1/60 units®. Use a triple integral to find the average value of f (z,y,2) = 222

over the region.
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7. (10 points) Let C be the curve made up of two line segments: the first from (1, 3) to
(3,7), and the second from (3,7) to (3,10). Evaluate / F(z,y) - d¥, where )
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