Math 233-Final Exam B

May 9, 2024
\qquad
Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) A golf ball is hit from the ground toward a vertical cliff that is 150 m away. The ball is launched at a 40° angle with respect to the horizontal, and its initial speed is $70 \mathrm{~m} / \mathrm{s}$. At what height will the ball strike the cliff? Will the ball ever reach its maximum possible height? Explain. (Use $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
2. (10 points) Find each limit or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(2,1)} \frac{x-y-1}{\sqrt{x-y}-1}$
(b) $\lim _{(x, y) \rightarrow(2,1)} \frac{(x-2)(y-1)}{(x-2)^{2}+(y-1)^{2}}$
3. (10 points) Let $w=x y z$.
(a) Compute the total differential $d w$.
(b) Use differentials to estimate the change in w as (x, y, z) changes from $(5,3,2)$ to (5.1, 3.1, 2.1).
(c) Your answer is part (b) is an approximation for the volume of the walls of a empty box with inside dimensions 5 m by 3 m by 2 m , when the walls are 5 cm thick. Explain or illustrate this idea.
4. (10 points) Consider the surface described by the equation $z=2 e^{4 x^{2}+2 x y-4 y}$.
(a) Find an equation of the plane tangent to the surface at the point $(1,2,2)$.
(b) Find a set of parametric equations for the line normal to the surface at the point $(1,2,2)$.
5. (10 points) Consider the double integral $\iint_{R} \frac{\sin x}{x} d A$, where R is the triangular region in the $x y$-plane bounded by the x-axis, the line $y=x$, and the line $x=1$. Sketch the region R, and set up the corresponding iterated integrals with both orders of integration. Then choose one of your iterated integrals and evaluate it.
6. (10 points) A region in space lies in the first octant (where $x, y, z \geq 0$) where it is bounded by the cylinder $y=x-x^{2}$ and the planes $z=0$ and $z=y$. The volume of the region is $1 / 60$ units 3. Use a triple integral to find the average value of $f(x, y, z)=2 x^{2}$ over the region.
7. (10 points) Let C be the curve made up of two line segments: the first from $(1,3)$ to $(3,7)$, and the second from $(3,7)$ to $(3,10)$. Evaluate $\int_{C} \vec{F}(x, y) \cdot d \vec{r}$, where $\vec{F}(x, y)=\left(x^{2} y+2\right) \hat{\imath}+(1-x y) \hat{\jmath}$.
