Math 236 - Assignment 10
April 17, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due April 24.

1. In using the method of variation of parameters to solve a differential equation, one must solve the system

$$
\begin{gathered}
y_{1}(x) v_{1}^{\prime}(x)+y_{2}(x) v_{2}^{\prime}(x)=0 \\
y_{1}^{\prime}(x) v_{1}^{\prime}(x)+y_{2}^{\prime}(x) v_{2}^{\prime}(x)=g(x)
\end{gathered}
$$

for $v_{1}^{\prime}(x)$ and $v_{2}^{\prime}(x)$, where y_{1}, y_{2}, and g are known functions. Use Cramer's rule to solve the system.
2. Prove that for square matrices "is similar to" is an equivalence relation.
3. Show by computation that $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is not diagonalizable.
4. Let $\left(\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right)$. Find the characteristic polynomial. Show that 2 is an eigenvalue of
A. Find a basis for the eigenspace corresponding to $\lambda=2$.
5. Find the characteristic polynomial of A.

$$
\left(\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

6. Construct a 2×2 matrix with only one (distinct) eigenvalue.
7. Show that if A^{2} is the zero matrix, then the only eigenvalue of A is 0 .
8. Diagonalize the following matrix.

$$
\left(\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right)
$$

