Math 236 - Assignment 11
April 24, 2024

Name $\qquad$
Score $\qquad$

Show all work to receive full credit. Supply explanations when necessary. This assignment is due May 1.

1. Let $D=\operatorname{diag}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{m}\right)$ be an $m \times m$ diagonal matrix. Use induction to prove that $D^{n}=\operatorname{diag}\left(\delta_{1}^{n}, \delta_{2}^{n}, \ldots, \delta_{m}^{n}\right)$.
2. Use the definition of the matrix exponential and the result of problem 1 to prove that

$$
e^{D}=\operatorname{diag}\left(e^{\delta_{1}}, e^{\delta_{2}}, \ldots, e^{\delta_{m}}\right)
$$

for any $m \times m$ diagonal matrix $D$.
3. Let $A=\left(\begin{array}{ccc}7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8\end{array}\right)$. Diagonalize $A$ and then compute $e^{A}$.
4. Find the eigenvalues and eigenvectors of $C$. Feel free to use technology to find the characteristic polynomial and its zeros. Also feel free to use technology for any RREF.

$$
C=\left(\begin{array}{llll}
4 & 3 & 2 & 1 \\
1 & 4 & 3 & 2 \\
2 & 1 & 4 & 3 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

5. Let $V$ be the vector space of polynomials defined on $[a, b]$. (Notice that unless we put a cap on the degree of the polynomials, $V$ is infinite dimensional, which is fine!) Define a "product" on $V$ by

$$
\langle f(x), g(x)\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Show that $\langle\cdot, \cdot\rangle$ is an inner product.
6. The set of "vectors,"

$$
\{1, \sin x, \cos x, \sin 2 x, \cos 2 x, \sin 3 x, \cos 3 x, \ldots\}
$$

is mutually orthogonal with respect to the inner product

$$
\langle f(x), g(x)\rangle=\int_{0}^{2 \pi} f(x) g(x) d x
$$

Pick any two distinct elements and show they are orthogonal.
7. The first three Legendre polynomials are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{3}(x)=\frac{3}{2} x^{2}-\frac{1}{2} .
$$

Show that these polynomials are mutually orthogonal with respect to the inner product

$$
\left\langle P_{m}(x), P_{n}(x)\right\rangle=\int_{-1}^{1} P_{m}(x) P_{n}(x) d x
$$

8. Compute the norm of each of the Legendre polynomials above.
