Math 236 - Assignment 2

Name
KEY \qquad
January 24, 2024

Show all work to receive full credit. Supply explanations when necessary. Do all computations by hand unless otherwise indicated. This assignment is due January 31.

1. For any real numbers x and y, we will say $x \sim y$ if and only if $x-y$ is an integer.

Prove that \sim is an equivalence relation.

Solution

Let x, y, and z be real numbers.
Reflexive: $\quad x \sim x$ because $x-x=0$ and 0 is an integer.
Symmetric: Assume $x \sim y$. Then $x-y=k$, where k is an integer. It follows that $y-x=-k$. Since $-k$ is an integer, we have $y \sim x$.

Transitive: Assume $x \sim y$ and $y \sim z$. Then $x-y=k$ and $y-z=n$, where k and n are integers. It follows that $x-z=k+n$. Since $k+n$ is an integer, $x \sim z$.
2. Prove that a linear combination of three linear combinations of x, y, and z is a linear combination of x, y, and z.

Solution
Let $\alpha, \beta, \gamma, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}$, and c_{3} be constants.

A linear combination of three linear combinations has the form

$$
\alpha\left(a_{1} x+a_{2} y+a_{3} z\right)+\beta\left(b_{1} x+b_{2} y+b_{3} z\right)+\gamma\left(c_{1} x+c_{2} y+c_{3} z\right)
$$

Distribute and rearrange terms to get

$$
\left(\alpha a_{1}+\beta b_{1}+\gamma c_{1}\right) x+\left(\alpha a_{2}+\beta b_{2}+\gamma c_{2}\right) y+\left(\alpha a_{3}+\beta b_{3}+\gamma c_{3}\right) z
$$

which is a linear combination of x, y, and z.
3. Find (by hand) the reduced row echelon form (RREF).

$$
\left(\begin{array}{lllll}
1 & 0 & 3 & 1 & 2 \\
1 & 4 & 2 & 1 & 5 \\
3 & 4 & 8 & 1 & 2
\end{array}\right)
$$

Solution
Here are Sage steps that reduce the matrix to RREF:
$A=$ matrix (QQ, $[[1,0,3,1,2],[1,4,2,1,5],[3,4,8,1,2]])$
A.add_multiple_of_row $(1,0,-1)$
A.add_multiple_of_row (2,0,-3)
A.rescale_row $(1,1 / 4)$
A.add_multiple_of_row $(2,1,-4)$
A.rescale_row ($2,-1 / 2$)
A.add_multiple_of_row $(0,2,-1)$

The RREF is

$$
\left(\begin{array}{ccccc}
1 & 0 & 3 & 0 & -3 / 2 \\
0 & 1 & -1 / 4 & 0 & 3 / 4 \\
0 & 0 & 0 & 1 & 7 / 2
\end{array}\right) .
$$

4. Write the system as an augmented matrix. Then compute the RREF and determine the solution set. You may use technology to find the RREF.

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+x_{4}-x_{5}=1 \\
3 x_{1}-x_{2}+x_{3}+x_{4}+x_{5}=3
\end{array}
$$

Solution
The augmented matrix is

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & 1 & -1 & 1 \\
3 & -1 & 1 & 1 & 1 & 3
\end{array}\right)
$$

$A=$ matrix $([[1,2,3,1,-1,1],[3,-1,1,1,1,3]])$
A.rref()

The RREF is

$$
\left(\begin{array}{cccccc}
1 & 0 & 5 / 7 & 3 / 7 & 1 / 7 & 1 \\
0 & 1 & 8 / 7 & 2 / 7 & -4 / 7 & 0
\end{array}\right) .
$$

The free variables are x_{3}, x_{4}, and x_{5}. The parameterized general solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
-5 / 7 \\
-8 / 7 \\
1 \\
0 \\
0
\end{array}\right) x_{3}+\left(\begin{array}{c}
-3 / 7 \\
-2 / 7 \\
0 \\
1 \\
0
\end{array}\right) x_{4}+\left(\begin{array}{c}
-1 / 7 \\
4 / 7 \\
0 \\
0 \\
1
\end{array}\right) x_{5} ; \quad x_{3}, x_{4}, x_{5} \in \mathbb{R}
$$

5. Say why the following matrix is NOT in RREF. Then reduce it to RREF. Finally, once it's reduced, show that no row is a linear combination of the other rows.

$$
\left(\begin{array}{lllll}
1 & 2 & 4 & 0 & 2 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Solution

The entry in row 1 , column 3 should be zero. Zeroing that entry, $R_{1}=-4 R_{2}+R_{1}$, will reduce the matrix to RREF:

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & -18 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

First let's show that R_{1} is not a linear combination of R_{2} and R_{3}. The combination

$$
R_{1}=\alpha R_{2}+\beta R_{2}
$$

is impossible because the first entry of $\alpha R_{2}+\beta R_{3}$ is $\alpha 0+\beta 0=0 \neq 1$.

Now let's show that R_{2} is not a linear combination of R_{1} and R_{3}. The combination

$$
R_{2}=\alpha R_{1}+\beta R_{3}
$$

is impossible because the third entry of $\alpha R_{1}+\beta R_{3}$ is $\alpha 0+\beta 0=0 \neq 1$.

Finally let's show that R_{3} is not a linear combination of R_{1} and R_{2}. The combination

$$
R_{3}=\alpha R_{1}+\beta R_{2}
$$

is impossible because the fourth entry of $\alpha R_{1}+\beta R_{2}$ is $\alpha 0+\beta 0=0 \neq 1$.
6. Give two distinct echelon forms of the matrix below. Be sure to say (or show) which sequence of row operations gave each form.

$$
\left(\begin{array}{llll}
2 & 1 & 1 & 3 \\
6 & 4 & 1 & 2 \\
1 & 5 & 1 & 5
\end{array}\right)
$$

Solution

The operations
A.add_multiple_of_row $(1,0,-3)$
A.add_multiple_of_row ($2,0,-1 / 2$)
A.add_multiple_of_row ($2,1,-9 / 2$)
A.rescale_row $(2,2)$
result in the echelon form

$$
\left(\begin{array}{cccc}
2 & 1 & 1 & 3 \\
0 & 1 & -2 & -7 \\
0 & 0 & 19 & 70
\end{array}\right)
$$

On the other hand, the operations
A.swap_rows $(0,2)$
A.add_multiple_of_row $(1,0,-6)$
A.add_multiple_of_row $(2,0,-2)$
A.add_multiple_of_row ($2,1,-9 / 26$)
A.rescale_row $(2,26)$
result in the echelon form

$$
\left(\begin{array}{cccc}
1 & 5 & 1 & 5 \\
0 & -26 & -5 & -28 \\
0 & 0 & 19 & 70
\end{array}\right)
$$

7. Reduce to RREF. Then express the third row of the RREF as a linear combination of the rows of the original matrix.

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 4 & 0 \\
3 & -1 & 0
\end{array}\right)
$$

Solution

In order to do this, we'll keep careful track of the row operations that are used to get the final third row. First, let's do $R_{3}^{(1)}=-3 R_{1}^{(0)}+R_{3}^{(0)}$ and $R_{2}^{(1)}=\frac{1}{4} R_{2}^{(0)}$ in order to obtain

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & -7 & -3
\end{array}\right)
$$

Next, we do $R_{3}^{(2)}=7 R_{2}^{(1)}+R_{3}^{(1)}$ leaving

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

Finally, we do $R_{3}^{(3)}=-\frac{1}{3} R_{3}^{(2)}$ to obtain

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Row 3 is done! How is it related to the original rows?

$$
R_{3}^{(3)}=-\frac{1}{3}\left(7 R_{2}^{(1)}+R_{3}^{(1)}\right)=-\frac{1}{3}\left(\frac{7}{4} R_{2}^{(0)}-3 R_{1}^{(0)}+R_{3}^{(0)}\right) .
$$

Therefore,

$$
\text { Final Row } 3=R_{3}^{(3)}=R_{1}^{(0)}-\frac{7}{12} R_{2}^{(0)}-\frac{1}{3} R_{3}^{(0)}
$$

In order to finish this problem, we do two more obvious steps to obtain the RREF

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

8. Three truck drivers (in perhaps 1960) went into a roadside cafe. One truck driver purchased four sandwiches, a cup of coffee, and ten doughnuts for $\$ 8.45$. Another driver purchased three sandwiches, a cup of coffee, and seven doughnuts for $\$ 6.30$. What did the third truck driver pay for a sandwich, a cup of coffee, and a doughnut? (If your approach to this problem involves matrices and elimination, you may use technology.)

Solution
Let s, c, and d represent the number of sandwiches, cups of coffee, and doughnuts, respectively. Then we have

$$
\begin{aligned}
4 s+c+10 d & =8.45 \\
3 s+c+7 d & =6.30
\end{aligned}
$$

and we must find the value of $s+c+d$.

Let's solve the linear system by using RREF:

$$
\left(\begin{array}{cccc}
1 & 0 & 3 & 2.15 \\
0 & 1 & -2 & -0.15
\end{array}\right)
$$

Now adding row 1 to row 2 gives

$$
s+c+d=2.00
$$

