Math 236 - Assignment 3

January 31, 2024
\qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. Do all computations by hand unless otherwise indicated. This assignment is due February 7.

1. Let V be the set of all vectors in \mathbb{R}^{3} with the usual scalar multiplication. However, define addition ' + ' in V as follows:

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)+\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{a}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+x_{2} \\
y_{1} \\
z_{1}
\end{array}\right) .
$$

Show that V is NOT a vector space.
2. Show that the set of all 2×2 diagonal matrices

$$
\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\}
$$

with the usual operations of matrix addition and scalar multiplication is a vector space.
3. Show that the set of all differentiable functions (of a single variable) with the usual operations of function addition and multiplication by a real constant is a vector space.
4. Show that the set \mathbb{R}^{+}of positive real numbers is a vector space when we interpret the "sum", $x+y$, as the product of x and y, and we interpret scalar "multiplication", $k \cdot x$, as the k th power of x.
5. Each element in a vector space must have an additive inverse. Prove that for each element x in vector space V, its additive inverse is unique. Use only the ten vector space conditions! (Hint: Let y and z be the additive inverses of x, and then show that y must be equal to z.)
6. Is this a subspace of $P_{2}:\left\{a x^{2}+b x+c: a=1\right\}$?
7. Determine if $\left(\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right)$ is in the span of $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right)$. What about $\left(\begin{array}{cc}-5 & 0 \\ -5 & -12\end{array}\right)$?
8. Parameterize the subspace's description. Then express the subspace as a span of vectors in $M_{2 \times 2}$.

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): 2 a-c-d=0 \text { and } a+3 b=0\right\}
$$

9. Suppose that U and W are subspaces of the vector space V. Prove that $U \cap W$ is a subspace of V. (Recall that ' \cap ' stands for the intersection. Every element in $U \cap W$ is in both U and W.)
