
Math 236 - Assignment 3 Name KEY

January 31, 2024

Show all work to receive full credit. Supply explanations when necessary. Do all computa-
tions by hand unless otherwise indicated. This assignment is due February 7.

1. Let V be the set of all vectors in R3 with the usual scalar multiplication. However,
define addition ’+’ in V as follows:x1y1

z1

+

x2y2
z2

 =

x1 + x2
y1
z1

 .

Show that V is NOT a vector space.

Solution

The vector addition is not commutative. Letab
c

 and

pq
r


be arbitrary vectors in R3. Thenab

c

+

pq
r

 =

a+ p
b
c

 ,

while pq
r

+

ab
c

 =

p+ a
q
r

 .

The first component of the sum is the same in both results, but the second and third
components are not necessarily the same.

2. Show that the set of all 2× 2 diagonal matrices{(
a 0
0 b

)
: a, b ∈ R

}
with the usual operations of matrix addition and scalar multiplication is a vector space.

Solution

Let’s name the space V and verify that the 10 vector space properties hold in V .

Property 1: Take two arbitrary matrices in V and add them:(
a 0
0 b

)
+

(
c 0
0 d

)
=

(
a+ c 0

0 b+ d

)
.



The result is a diagonal matrix in V .

Property 2: Refer to the addition shown above. Because real number addition is
commutative, that result is equal to(

c+ a 0
0 d+ b

)
=

(
c 0
0 d

)
+

(
a 0
0 b

)
.

Property 3: Take three arbitrary matrices in V .((
a 0
0 b

)
+

(
c 0
0 d

))
+

(
e 0
0 f

)
=

(
a+ c 0

0 b+ d

)
+

(
e 0
0 f

)
=

(
(a+ c) + e 0

0 (b+ d) + f

)
.

In the final matrix, the addition of real numbers is associative. Therefore(
(a+ c) + e 0

0 (b+ d) + f

)
=

(
a+ (c+ e) 0

0 b+ (d+ f)

)
= · · · =

(
a 0
0 b

)
+

((
c 0
0 d

)
+

(
e 0
0 f

))
.

Property 4: The matrix

(
0 0
0 0

)
is a diagonal matrix in V and

(
a 0
0 b

)
+

(
0 0
0 0

)
=

(
a 0
0 b

)
.

Therefore

(
0 0
0 0

)
is the “zero vector.”

Property 5: For any given matrix in V , the diagonal matrix with opposite entries works
as the additive inverse in V :(

a 0
0 b

)
+

(
−a 0
0 −b

)
=

(
0 0
0 0

)
.

Property 6: Take an arbitrary diagonal matrix in V and multiply it by the scalar α:

α

(
a 0
0 b

)
=

(
αa 0
0 αb

)
.

The result is a diagonal matrix in V .

Property 7: Take an arbitrary diagonal matrix in V and multiply it by the sum of the
scalars α and β:

(α + β)

(
a 0
0 b

)
=

(
(α + β)a 0

0 (α + β)b

)
.

Now expand and rewrite:(
αa+ βa 0

0 αb+ βb

)
=

(
αa 0
0 αb

)
+

(
βa 0
0 βb

)
= α

(
a 0
0 b

)
+ β

(
a 0
0 b

)
.



Property 8: Take two arbitrary matrices in V and the scalar α.

α

((
a 0
0 b

)
+

(
c 0
0 d

))
= α

(
a+ c 0

0 b+ d

)
= · · · = α

(
a 0
0 b

)
+ α

(
c 0
0 d

)
.

Property 9: Take an arbitrary diagonal matrix in V and multiply it by the product of
the scalars α and β:

(αβ)

(
a 0
0 b

)
=

(
(αβ)a 0

0 (αβ)b

)
.

Now rewrite using the associative property of real number multiplication:(
α(βa) 0

0 α(βb)

)
= α

(
β

(
a 0
0 b

))
.

Property 10: Take an arbitrary matrix in V and multiply by the scalar 1:

1

(
a 0
0 b

)
=

(
1a 0
0 1b

)
=

(
a 0
0 b

)
.

3. Show that the set of all differentiable functions (of a single variable) with the usual
operations of function addition and multiplication by a real constant is a vector space.

Solution

The closure properties, 1 and 6, follow immediately from the calculus results that say

d

dx
[f(x) + g(x)] = f ′(x) + g′(x)

d

dx
[α f(x)] = α f ′(x).

The remaining properties are inherited from the real number system because the func-
tions under consideration are real-valued functions.

4. Show that the set R+ of positive real numbers is a vector space when we interpret the
“sum”, x+y, as the product of x and y, and we interpret scalar “multiplication”, k ·x,
as the kth power of x.

Solution

Let’s name the vector space V and verify that the 10 vector space properties hold in
V .

Property 1: Take two positive real numbers x and y and “add” them: x + y = xy.
Since the product of two positive real numbers is a positive real number, x+ y is in V .



Property 2: x + y = y + x because multiplication of positive real numbers is commu-
tative.

Property 3: (x + y) + z = (xy)z = x(yz) = x + (y + z) because the multiplaction of
positive real numbers is associative.

Property 4: The positive real number 1 is the zero vector in V : x+ 1 = x 1 = 1x = x.

Property 5: For any given positive real number, the positive real number 1/x works as
the additive inverse in V : (x+ 1/x) = x (1/x) = 1.

Property 6: Take an arbitrary positive real number in V and “multiply” it by the
scalar α: α · x = xα. For any real number α, xα is a positive real number. Therefore
α · x = xα is in V .

Property 7: Take an arbitrary positive real number in V and “multiply” it by the sum
(the regular sum in R) of the scalars α and β: (α+β)·x = xα+β = xαxβ = (α·x)+(β ·x).

Property 8: Take two arbitrary positive real numbers in V and the scalar α: α·(x+y) =
(xy)α = xαyα = α · x+ α · y.

Property 9: Take an arbitrary positive real number in V and “multiply” it by the
product (the regular product in R) of the scalars α and β: (αβ) · x = xαβ = xβα =
(xβ)α = α · (β · x).

Property 10: Take an arbitrary positive real number in V and “multiply” by the scalar
1: 1 · x = x1 = x.

5. Each element in a vector space must have an additive inverse. Prove that for each
element x in vector space V , its additive inverse is unique. Use only the ten vector
space conditions! (Hint: Let y and z be the additive inverses of x, and then show that
y must be equal to z.)

Solution

Suppose x has two additive inverses y and z. Then x + y = 0 and x + z = 0 and it
follows that x+ y = x+ z. Now add y to both sides to get the following:

(x+ y) + y = (x+ z) + y

0 + y = x+ (z + y)

y = x+ (y + z)

y = (x+ y) + z

y = 0 + z

y = z



6. Is this a subspace of P2: {ax2 + bx+ c : a = 1}?

Solution

No way! An arbitrary element of the space would have the form x2 + bx + c. (A
polynomial whose leading coefficient is 1 is called monic.) If we multiply by any scalar
α for which α 6= 1, we get αx2 + αbx+ αc, which is not in the set. (It is not monic.)

7. Determine if

(
0 1
4 2

)
is in the span of

(
1 0
1 1

)
and

(
2 0
2 3

)
. What about

(
−5 0
−5 −12

)
?

Solution

First, we look for constants a and b so that

a

(
1 0
1 1

)
+ b

(
2 0
2 3

)
=

(
0 1
4 2

)
.

There are no such constants because any linear combination of the two matrices will
have a zero in the (1, 2)-position, not the required 1.

For the second question, the answer is yes. It is easy to verify that a = 9 and b = −7
do the trick:

9

(
1 0
1 1

)
− 7

(
2 0
2 3

)
=

(
−5 0
−5 −12

)
.

8. Parameterize the subspace’s description. Then express the subspace as a span of vectors
in M2×2. {(

a b
c d

)
: 2a− c− d = 0 and a+ 3b = 0

}
Solution

Use the given conditions to say a = −3b and c = 2a − d = −6b − d to rewrite the
description as follows{(

−3b b
−6b− d d

)
: b, d ∈ R

}
=

{(
−3 1
−6 0

)
b+

(
0 0
−1 1

)
d : b, d ∈ R

}

= span

({(
−3 1
−6 0

)
,

(
0 0
−1 1

)})
.

9. Suppose that U and W are subspaces of the vector space V . Prove that U ∩W is a
subspace of V . (Recall that ’∩’ stands for the intersection. Every element in U ∩W is
in both U and W .)

Solution

Let’s show that U ∩W is closed under linear combinations.



Let x and y be arbitary elements of U ∩W . Then x ∈ U , x ∈ W , y ∈ U , and y ∈ W .
Since U is a subspace, αx + βy ∈ U for any scalars α and β. Similarly, since W is a
subspace, αx + βy ∈ W . So αx + βy is in U and in W . That is, αx + βy ∈ U ∩W ,
and we’ve shown that U ∩W is closed under linear combinations.


