Math 236 - Assignment 3

Name
KEY \qquad
January 31, 2024

Show all work to receive full credit. Supply explanations when necessary. Do all computations by hand unless otherwise indicated. This assignment is due February 7.

1. Let V be the set of all vectors in \mathbb{R}^{3} with the usual scalar multiplication. However, define addition ' + ' in V as follows:

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)+\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+x_{2} \\
y_{1} \\
z_{1}
\end{array}\right)
$$

Show that V is NOT a vector space.

Solution

The vector addition is not commutative. Let

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)
$$

be arbitrary vectors in \mathbb{R}^{3}. Then

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
a+p \\
b \\
c
\end{array}\right)
$$

while

$$
\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)+\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
p+a \\
q \\
r
\end{array}\right)
$$

The first component of the sum is the same in both results, but the second and third components are not necessarily the same.
2. Show that the set of all 2×2 diagonal matrices

$$
\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\}
$$

with the usual operations of matrix addition and scalar multiplication is a vector space.

Solution

Let's name the space V and verify that the 10 vector space properties hold in V.
Property 1: Take two arbitrary matrices in V and add them:

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right) .
$$

The result is a diagonal matrix in V.
Property 2: Refer to the addition shown above. Because real number addition is commutative, that result is equal to

$$
\left(\begin{array}{cc}
c+a & 0 \\
0 & d+b
\end{array}\right)=\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right)+\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

Property 3: Take three arbitrary matrices in V.

$$
\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right)\right)+\left(\begin{array}{ll}
e & 0 \\
0 & f
\end{array}\right)=\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right)+\left(\begin{array}{ll}
e & 0 \\
0 & f
\end{array}\right)=\left(\begin{array}{cc}
(a+c)+e & 0 \\
0 & (b+d)+f
\end{array}\right) .
$$

In the final matrix, the addition of real numbers is associative. Therefore

$$
\left(\begin{array}{cc}
(a+c)+e & 0 \\
0 & (b+d)+f
\end{array}\right)=\left(\begin{array}{cc}
a+(c+e) & 0 \\
0 & b+(d+f)
\end{array}\right)=\cdots=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\left(\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right)+\left(\begin{array}{ll}
e & 0 \\
0 & f
\end{array}\right)\right) .
$$

Property 4: The matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is a diagonal matrix in V and

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

Therefore $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is the "zero vector."
Property 5: For any given matrix in V, the diagonal matrix with opposite entries works as the additive inverse in V :

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\left(\begin{array}{cc}
-a & 0 \\
0 & -b
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Property 6: Take an arbitrary diagonal matrix in V and multiply it by the scalar α :

$$
\alpha\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
\alpha a & 0 \\
0 & \alpha b
\end{array}\right) .
$$

The result is a diagonal matrix in V.
Property 7: Take an arbitrary diagonal matrix in V and multiply it by the sum of the scalars α and β :

$$
(\alpha+\beta)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
(\alpha+\beta) a & 0 \\
0 & (\alpha+\beta) b
\end{array}\right) .
$$

Now expand and rewrite:

$$
\left(\begin{array}{cc}
\alpha a+\beta a & 0 \\
0 & \alpha b+\beta b
\end{array}\right)=\left(\begin{array}{cc}
\alpha a & 0 \\
0 & \alpha b
\end{array}\right)+\left(\begin{array}{cc}
\beta a & 0 \\
0 & \beta b
\end{array}\right)=\alpha\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)+\beta\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) .
$$

Property 8: Take two arbitrary matrices in V and the scalar α.

$$
\alpha\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\left(\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right)\right)=\alpha\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right)=\cdots=\alpha\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+\alpha\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)
$$

Property 9: Take an arbitrary diagonal matrix in V and multiply it by the product of the scalars α and β :

$$
(\alpha \beta)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
(\alpha \beta) a & 0 \\
0 & (\alpha \beta) b
\end{array}\right)
$$

Now rewrite using the associative property of real number multiplication:

$$
\left(\begin{array}{cc}
\alpha(\beta a) & 0 \\
0 & \alpha(\beta b)
\end{array}\right)=\alpha\left(\beta\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\right) .
$$

Property 10: Take an arbitrary matrix in V and multiply by the scalar 1:

$$
1\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
1 a & 0 \\
0 & 1 b
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)
$$

3. Show that the set of all differentiable functions (of a single variable) with the usual operations of function addition and multiplication by a real constant is a vector space.

Solution

The closure properties, 1 and 6 , follow immediately from the calculus results that say

$$
\begin{aligned}
\frac{d}{d x}[f(x)+g(x)] & =f^{\prime}(x)+g^{\prime}(x) \\
\frac{d}{d x}[\alpha f(x)] & =\alpha f^{\prime}(x) .
\end{aligned}
$$

The remaining properties are inherited from the real number system because the functions under consideration are real-valued functions.
4. Show that the set \mathbb{R}^{+}of positive real numbers is a vector space when we interpret the "sum", $x+y$, as the product of x and y, and we interpret scalar "multiplication", $k \cdot x$, as the k th power of x.

Solution

Let's name the vector space V and verify that the 10 vector space properties hold in V.

Property 1: Take two positive real numbers x and y and "add" them: $x+y=x y$. Since the product of two positive real numbers is a positive real number, $x+y$ is in V.

Property 2: $x+y=y+x$ because multiplication of positive real numbers is commutative.

Property 3: $(x+y)+z=(x y) z=x(y z)=x+(y+z)$ because the multiplaction of positive real numbers is associative.

Property 4: The positive real number 1 is the zero vector in $V: x+1=x 1=1 x=x$.
Property 5: For any given positive real number, the positive real number $1 / x$ works as the additive inverse in $V:(x+1 / x)=x(1 / x)=1$.

Property 6: Take an arbitrary positive real number in V and "multiply" it by the scalar $\alpha: \alpha \cdot x=x^{\alpha}$. For any real number α, x^{α} is a positive real number. Therefore $\alpha \cdot x=x^{\alpha}$ is in V.

Property 7: Take an arbitrary positive real number in V and "multiply" it by the sum (the regular sum in \mathbb{R}) of the scalars α and $\beta:(\alpha+\beta) \cdot x=x^{\alpha+\beta}=x^{\alpha} x^{\beta}=(\alpha \cdot x)+(\beta \cdot x)$.

Property 8: Take two arbitrary positive real numbers in V and the scalar $\alpha: \alpha \cdot(x+y)=$ $(x y)^{\alpha}=x^{\alpha} y^{\alpha}=\alpha \cdot x+\alpha \cdot y$.

Property 9: Take an arbitrary positive real number in V and "multiply" it by the product (the regular product in \mathbb{R}) of the scalars α and $\beta:(\alpha \beta) \cdot x=x^{\alpha \beta}=x^{\beta \alpha}=$ $\left(x^{\beta}\right)^{\alpha}=\alpha \cdot(\beta \cdot x)$.

Property 10: Take an arbitrary positive real number in V and "multiply" by the scalar $1: 1 \cdot x=x^{1}=x$.
5. Each element in a vector space must have an additive inverse. Prove that for each element x in vector space V, its additive inverse is unique. Use only the ten vector space conditions! (Hint: Let y and z be the additive inverses of x, and then show that y must be equal to z.)

Solution

Suppose x has two additive inverses y and z. Then $x+y=0$ and $x+z=0$ and it follows that $x+y=x+z$. Now add y to both sides to get the following:

$$
\begin{gathered}
(x+y)+y=(x+z)+y \\
0+y=x+(z+y) \\
y=x+(y+z) \\
y=(x+y)+z \\
y=0+z \\
y=z
\end{gathered}
$$

6. Is this a subspace of $P_{2}:\left\{a x^{2}+b x+c: a=1\right\}$?

Solution

No way! An arbitrary element of the space would have the form $x^{2}+b x+c$. (A polynomial whose leading coefficient is 1 is called monic.) If we multiply by any scalar α for which $\alpha \neq 1$, we get $\alpha x^{2}+\alpha b x+\alpha c$, which is not in the set. (It is not monic.)
7. Determine if $\left(\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right)$ is in the span of $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right)$. What about $\left(\begin{array}{cc}-5 & 0 \\ -5 & -12\end{array}\right)$?

Solution

First, we look for constants a and b so that

$$
a\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)+b\left(\begin{array}{ll}
2 & 0 \\
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
4 & 2
\end{array}\right)
$$

There are no such constants because any linear combination of the two matrices will have a zero in the $(1,2)$-position, not the required 1 .

For the second question, the answer is yes. It is easy to verify that $a=9$ and $b=-7$ do the trick:

$$
9\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)-7\left(\begin{array}{ll}
2 & 0 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-5 & 0 \\
-5 & -12
\end{array}\right) .
$$

8. Parameterize the subspace's description. Then express the subspace as a span of vectors in $M_{2 \times 2}$.

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): 2 a-c-d=0 \text { and } a+3 b=0\right\}
$$

Solution

Use the given conditions to say $a=-3 b$ and $c=2 a-d=-6 b-d$ to rewrite the description as follows

$$
\begin{gathered}
\left\{\left(\begin{array}{cc}
-3 b & b \\
-6 b-d & d
\end{array}\right): b, d \in \mathbb{R}\right\}=\left\{\left(\begin{array}{ll}
-3 & 1 \\
-6 & 0
\end{array}\right) b+\left(\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right) d: b, d \in \mathbb{R}\right\} \\
\\
=\operatorname{span}\left(\left\{\left(\begin{array}{cc}
-3 & 1 \\
-6 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right)\right\}\right)
\end{gathered}
$$

9. Suppose that U and W are subspaces of the vector space V. Prove that $U \cap W$ is a subspace of V. (Recall that ' \cap ' stands for the intersection. Every element in $U \cap W$ is in both U and W.)

Solution

Let's show that $U \cap W$ is closed under linear combinations.

Let x and y be arbitary elements of $U \cap W$. Then $x \in U, x \in W, y \in U$, and $y \in W$. Since U is a subspace, $\alpha x+\beta y \in U$ for any scalars α and β. Similarly, since W is a subspace, $\alpha x+\beta y \in W$. So $\alpha x+\beta y$ is in U and in W. That is, $\alpha x+\beta y \in U \cap W$, and we've shown that $U \cap W$ is closed under linear combinations.

