Math 236 - Assignment 4

February 14, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 21.

1. Determine whether the set is a linearly dependent or independent subset of \mathcal{P}_{2}.

$$
\left\{2+x+7 x^{2}, 3-x+2 x^{2}, 4-3 x^{2}\right\}
$$

2. Determine whether the set is a linearly dependent or independent subset of $M_{2 \times 2}$.

$$
\left\{\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
-1 & 4
\end{array}\right)\right\}
$$

3. Suppose that the set $\{\vec{u}, \vec{v}, \vec{w}\}$ is a linearly independent set. Prove that $\{\vec{u}, \vec{u}+\vec{v}, \vec{u}+\vec{v}+\vec{w}\}$ is also a linearly independent set.
4. Suppose that all proper subsets of $A=\{\vec{x}, \vec{y}, \vec{z}\}$ (except the empty set) are linearly independent. Must it be true that A itself is linearly independent?
5. Is this a basis for \mathcal{P}_{2} ?

$$
\left\{x^{2}-x+1,2 x+1,2 x-1\right\}
$$

6. Represent $x+x^{3}$ with respect to the given basis for \mathcal{P}_{3}.

$$
B=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}
$$

7. Find a basis for the subspace below. Prove that it is a basis.

$$
M=\left\{a+b x+c x^{2}+d x^{3}: 2 a+b-c-2 d=0\right\}
$$

8. Find a basis for the vector space of symmetric 2×2 matrices.
9. Find a basis for the subspace of polynomials $p \in \mathcal{P}_{3}$ with $p(1)=0$ and $p(2)=0$. Prove that it is a basis.
10. Find a basis for, and the dimension of, the solution set of the following system.

$$
\begin{array}{r}
x_{1}-4 x_{2}+3 x_{3}-x_{4}=0 \\
2 x_{1}-8 x_{2}+6 x_{3}-2 x_{4}=0
\end{array}
$$

11. What is the dimension of each vector space (or subspace) from problems 7-9?
