Math 236 - Assignment 4

February 14, 2024

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 21.

1. Determine whether the set is a linearly dependent or independent subset of \mathcal{P}_{2}.

$$
\left\{2+x+7 x^{2}, 3-x+2 x^{2}, 4-3 x^{2}\right\}
$$

Solution

Let c_{1}, c_{2}, and c_{3} be constants with

$$
c_{1}\left(2+x+7 x^{2}\right)+c_{2}\left(3-x+2 x^{2}\right)+c_{3}\left(4-3 x^{2}\right)=0 .
$$

This equation is equivalent to the system

$$
2 c_{1}+3 c_{2}+4 c_{3}=0, c_{1}-c_{2}=0,7 c_{1}+2 c_{2}-3 c_{3}=0
$$

Reduce the associated augmented matrix to RREF:

$$
\left(\begin{array}{cccc}
2 & 3 & 4 & 0 \\
1 & -1 & 0 & 0 \\
7 & 2 & -3 & 0
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Therefore, $c_{1}=c_{2}=c_{3}=0$, and the set is linearly independent.
2. Determine whether the set is a linearly dependent or independent subset of $M_{2 \times 2}$.

$$
\left\{\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
-1 & 4
\end{array}\right)\right\}
$$

Solution

Let c_{1} and c_{2} be constants with

$$
c_{1}\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right)+c_{2}\left(\begin{array}{cc}
1 & 0 \\
-1 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

It follows that

$$
5 c_{1}+c_{2}=0,4 c_{1}=0, c_{1}-c_{2}=0,2 c_{1}+4 c_{2}=0
$$

The only solution is $c_{1}=c_{2}=0$. The "vectors" are linearly independent.
3. Suppose that the set $\{\vec{u}, \vec{v}, \vec{w}\}$ is a linearly independent set. Prove that $\{\vec{u}, \vec{u}+\vec{v}, \vec{u}+\vec{v}+\vec{w}\}$ is also a linearly independent set.

Solution

Let's look at

$$
d_{1} \vec{u}+d_{2}(\vec{u}+\vec{v})+d_{3}(\vec{u}+\vec{v}+\vec{w})=0 .
$$

Distribute and rearrange to get

$$
\left(d_{1}+d_{2}+d_{3}\right) \vec{u}+\left(d_{2}+d_{3}\right) \vec{v}+d_{3} \vec{w}=0
$$

It follows from the linear independence of \vec{u}, \vec{v}, and \vec{w} that

$$
d_{1}+d_{2}+d_{3}=0, \quad d_{2}+d_{3}=0, \quad d_{3}=0
$$

The only solution is $d_{1}=d_{2}=d_{3}=0$.
4. Suppose that all proper subsets of $A=\{\vec{x}, \vec{y}, \vec{z}\}$ (except the empty set) are linearly independent. Must it be true that A itself is linearly independent?

Solution

Nope! Here is a simple counterexample:

$$
\{\hat{\imath}, \hat{\jmath}, \hat{k}, \hat{\imath}+\hat{\jmath}+\hat{k}\} .
$$

5. Is this a basis for \mathcal{P}_{2} ?

$$
\left\{x^{2}-x+1,2 x+1,2 x-1\right\}
$$

Solution

Let's first check linear independence:
$c_{1}\left(x^{2}-x+1\right)+c_{2}(2 x+1)+c_{3}(2 x-1)=0 \Longrightarrow c_{1}=0,-c_{1}+2 c_{2}+2 c_{3}=0, c_{1}+c_{2}-c_{3}=0$.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 2 & 2 & 0 \\
1 & 1 & -1 & 0
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Yes! The "vectors" are linearly indpendent.
Does the set span \mathcal{P}_{2} ? Well, yes. We actually answered that with the work above. The coefficient matrix above is nonsingular, so there is a unique solution for any right-hand side, not just the zero vector.

Another way to prove this is to just notice that the set contains 3 linearly independent vectors in a 3-dimensional space. They must form a basis for the space.
6. Represent $x+x^{3}$ with respect to the given basis for \mathcal{P}_{3}.

$$
B=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}
$$

Solution

We find c_{1}, c_{2}, c_{3}, and c_{4} so that

$$
c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)+c_{4}\left(1+x+x^{2}+x^{3}\right)=x+x^{3} .
$$

This gives the system

$$
\begin{aligned}
c_{1}+c_{2}+c_{3}+c_{4} & =0 \\
c_{2}+c_{3}+c_{4} & =1 \\
c_{3}+c_{4} & =0 \\
c_{4} & =1
\end{aligned} .
$$

The system is in echelon form. Backsolving gives

$$
c_{4}=1, c_{3}=-1, c_{2}=1, c_{1}=-1
$$

so that

$$
\operatorname{Rep}_{B}\left(x+x^{3}\right)=\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)
$$

7. Find a basis for the subspace below. Prove that it is a basis.

$$
M=\left\{a+b x+c x^{2}+d x^{3}: 2 a+b-c-2 d=0\right\}
$$

Solution

First use the condition to rewrite M :

$$
\begin{aligned}
& M=\left\{a+b x+(2 a+b-2 d) x^{2}+d x^{3}: a, b, d \in \mathbb{R}\right\} \\
= & \left\{a\left(1+2 x^{2}\right)+b\left(x+x^{2}\right)+d\left(-2 x^{2}+x^{3}\right): a, b, d \in \mathbb{R}\right\} .
\end{aligned}
$$

Now let $B=\left\langle 1+2 x^{2}, x+x^{2},-2 x^{2}+x^{3}\right\rangle$.
B spans M ?
Yes. This is clear from the final way in which M is written. Polynomials in M are linear combinations of the elements of B.
B is linearly independent?
Yes. Suppose

$$
c_{1}\left(1+2 x^{2}\right)+c_{2}\left(x+x^{2}\right)+c_{3}\left(-2 x^{2}+x^{3}\right)=0 .
$$

Then, by equating coefficients, we have

$$
c 1=0, c_{2}=0,2 c_{1}+c_{2}-2 c_{3}=0, c_{3}=0
$$

It follows that $c_{1}=c_{2}=c_{3}=0$.
8. Find a basis for the vector space of symmetric 2×2 matrices.

Solution

$$
S=\left\{\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right): a, b, c \in \mathbb{R}\right\}
$$

It should be pretty clear that a possible basis is

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\rangle .
$$

9. Find a basis for the subspace of polynomials $p \in \mathcal{P}_{3}$ with $p(1)=0$ and $p(2)=0$. Prove that it is a basis.

Solution
Let's call the subspace W. Then

$$
W=\left\{a+b x+c x^{2}+d x^{3}: a+b+c+d=0 \text { and } a+2 b+4 c+8 d=0\right\} .
$$

The solution set for the conditions can be found by using RREF:

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 8 & 0
\end{array}\right) \quad \xrightarrow{\text { rref }} \quad\left(\begin{array}{ccccc}
1 & 0 & -2 & -6 & 0 \\
0 & 1 & 3 & 7 & 0
\end{array}\right) .
$$

Therefore $a=2 c+6 d$ and $b=-3 c-7 d$.
Now let's parameterize the subspace:

$$
\begin{gathered}
W=\left\{(2 c+6 d)+(-3 c-7 d) x+c x^{2}+d x^{3}: c, d \in \mathbb{R}\right\} \\
=\left\{c\left(2-3 x+x^{2}\right)+d\left(6-7 x+x^{3}\right): c, d \in \mathbb{R}\right\} \\
=\operatorname{span}\left\{2-3 x+x^{2}, 6-7 x+x^{3}\right\}
\end{gathered}
$$

Let $B=\left\langle 2-3 x+x^{2}, 6-7 x+x^{3}\right\rangle$. It is clear from the parameterization that B spans W. To check linear independence, suppose

$$
c_{1}\left(2-3 x+x^{2}\right)+c_{2}\left(6-7 x+x^{3}\right)=0 .
$$

It is easy to see that $c_{1}=c_{2}=0$.
10. Find a basis for, and the dimension of, the solution set of the following system.

$$
\begin{array}{r}
x_{1}-4 x_{2}+3 x_{3}-x_{4}=0 \\
2 x_{1}-8 x_{2}+6 x^{3}-2 x_{4}=0
\end{array}
$$

Solution

The second equation is two times the first, so let's ignore it. With the remaining equation, we can backsolve, using x_{2}, x_{3}, and x_{4} as free variables.

$$
x_{1}=4 x_{2}-3 x_{3}+x_{4}, \quad x_{2}=x_{2}, \quad x_{3}=x_{3}, \quad x_{4}=x_{4} .
$$

The solution space is

$$
S=\left\{\left(\begin{array}{l}
4 \\
1 \\
0 \\
0
\end{array}\right) x_{2}+\left(\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right) x_{3}+\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) x_{4}\right\} .
$$

A basis for the solution space is

$$
B=\left\langle\left(\begin{array}{l}
4 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\right\rangle
$$

$\operatorname{dim}(S)=3$.
11. What is the dimension of each vector space (or subspace) from problems 7-9?

Solution

Problem 7: $\operatorname{dim}(M)=3$
Problem 8: $\operatorname{dim}(M)=3$
Problem 9: $\operatorname{dim}(W)=2$

