Math 236 - Assignment 4

KEY _____

February 14, 2024

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 21.

1. Determine whether the set is a linearly dependent or independent subset of \mathcal{P}_2 .

$$\{2 + x + 7x^2, 3 - x + 2x^2, 4 - 3x^2\}$$

Solution

Let c_1, c_2 , and c_3 be constants with

$$c_1(2 + x + 7x^2) + c_2(3 - x + 2x^2) + c_3(4 - 3x^2) = 0.$$

This equation is equivalent to the system

$$2c_1 + 3c_2 + 4c_3 = 0, c_1 - c_2 = 0, 7c_1 + 2c_2 - 3c_3 = 0.$$

Reduce the associated augmented matrix to RREF:

$$\begin{pmatrix} 2 & 3 & 4 & 0 \\ 1 & -1 & 0 & 0 \\ 7 & 2 & -3 & 0 \end{pmatrix} \xrightarrow{\operatorname{rref}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Therefore, $c_1 = c_2 = c_3 = 0$, and the set is linearly independent.

2. Determine whether the set is a linearly dependent or independent subset of $M_{2\times 2}$.

$$\left\{ \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 4 \end{pmatrix} \right\}$$

Solution

Let c_1 and c_2 be constants with

$$c_1\begin{pmatrix} 5 & 4\\ 1 & 2 \end{pmatrix} + c_2\begin{pmatrix} 1 & 0\\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}.$$

It follows that

 $5c_1 + c_2 = 0, \ 4c_1 = 0, \ c_1 - c_2 = 0, \ 2c_1 + 4c_2 = 0.$

The only solution is $c_1 = c_2 = 0$. The "vectors" are linearly independent.

3. Suppose that the set $\{\vec{u}, \vec{v}, \vec{w}\}$ is a linearly independent set. Prove that $\{\vec{u}, \vec{u} + \vec{v}, \vec{u} + \vec{v} + \vec{w}\}$ is also a linearly independent set.

Solution

Let's look at

$$d_1\vec{u} + d_2(\vec{u} + \vec{v}) + d_3(\vec{u} + \vec{v} + \vec{w}) = 0.$$

Distribute and rearrange to get

$$(d_1 + d_2 + d_3)\vec{u} + (d_2 + d_3)\vec{v} + d_3\vec{w} = 0.$$

It follows from the linear independence of \vec{u} , \vec{v} , and \vec{w} that

$$d_1 + d_2 + d_3 = 0$$
, $d_2 + d_3 = 0$, $d_3 = 0$.

The only solution is $d_1 = d_2 = d_3 = 0$.

4. Suppose that all proper subsets of $A = \{\vec{x}, \vec{y}, \vec{z}\}$ (except the empty set) are linearly independent. Must it be true that A itself is linearly independent?

Solution

Nope! Here is a simple counterexample:

$$\{\hat{i}, \hat{j}, \hat{k}, \hat{i} + \hat{j} + \hat{k}\}.$$

5. Is this a basis for \mathcal{P}_2 ?

$${x^2 - x + 1, 2x + 1, 2x - 1}$$

Solution

Let's first check linear independence:

$$c_{1}(x^{2}-x+1)+c_{2}(2x+1)+c_{3}(2x-1) = 0 \Longrightarrow c_{1} = 0, \ -c_{1}+2c_{2}+2c_{3} = 0, \ c_{1}+c_{2}-c_{3} = 0.$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 2 & 0 \\ 1 & 1 & -1 & 0 \end{pmatrix} \xrightarrow{\operatorname{rref}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Yes! The "vectors" are linearly indpendent.

Does the set span \mathcal{P}_2 ? Well, yes. We actually answered that with the work above. The coefficient matrix above is nonsingular, so there is a unique solution for any right-hand side, not just the zero vector.

Another way to prove this is to just notice that the set contains 3 linearly independent vectors in a 3-dimensional space. They must form a basis for the space.

6. Represent $x + x^3$ with respect to the given basis for \mathcal{P}_3 .

$$B = \{1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3\}$$

Solution

We find c_1 , c_2 , c_3 , and c_4 so that

$$c_1(1) + c_2(1+x) + c_3(1+x+x^2) + c_4(1+x+x^2+x^3) = x+x^3$$

This gives the system

The system is in echelon form. Backsolving gives

$$c_4 = 1, c_3 = -1, c_2 = 1, c_1 = -1,$$

so that

$$\operatorname{Rep}_B(x+x^3) = \begin{pmatrix} -1\\ 1\\ -1\\ 1 \end{pmatrix}.$$

7. Find a basis for the subspace below. Prove that it is a basis.

$$M = \{a + bx + cx^{2} + dx^{3} : 2a + b - c - 2d = 0\}$$

Solution

First use the condition to rewrite M:

$$M = \{a + bx + (2a + b - 2d)x^2 + dx^3 : a, b, d \in \mathbb{R}\}$$
$$= \{a(1 + 2x^2) + b(x + x^2) + d(-2x^2 + x^3) : a, b, d \in \mathbb{R}\}.$$

Now let $B = \langle 1 + 2x^2, x + x^2, -2x^2 + x^3 \rangle$.

B spans M?

Yes. This is clear from the final way in which M is written. Polynomials in M are linear combinations of the elements of B.

B is linearly independent? Yes. Suppose

$$c_1(1+2x^2) + c_2(x+x^2) + c_3(-2x^2+x^3) = 0.$$

Then, by equating coefficients, we have

$$c1 = 0, c_2 = 0, 2c_1 + c_2 - 2c_3 = 0, c_3 = 0.$$

It follows that $c_1 = c_2 = c_3 = 0$.

8. Find a basis for the vector space of symmetric 2×2 matrices.

Solution

$$S = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

It should be pretty clear that a possible basis is

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle.$$

9. Find a basis for the subspace of polynomials $p \in \mathcal{P}_3$ with p(1) = 0 and p(2) = 0. Prove that it is a basis.

Solution

Let's call the subspace W. Then

$$W = \{a + bx + cx^{2} + dx^{3} : a + b + c + d = 0 \text{ and } a + 2b + 4c + 8d = 0\}.$$

The solution set for the conditions can be found by using RREF:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 4 & 8 & 0 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -2 & -6 & 0 \\ 0 & 1 & 3 & 7 & 0 \end{pmatrix}.$$

Therefore a = 2c + 6d and b = -3c - 7d.

Now let's parameterize the subspace:

$$W = \{(2c+6d) + (-3c-7d)x + cx^2 + dx^3 : c, d \in \mathbb{R}\}$$
$$= \{c(2-3x+x^2) + d(6-7x+x^3) : c, d \in \mathbb{R}\}$$
$$= \operatorname{span}\{2-3x+x^2, 6-7x+x^3\}.$$

Let $B = \langle 2 - 3x + x^2, 6 - 7x + x^3 \rangle$. It is clear from the parameterization that B spans W. To check linear independence, suppose

$$c_1(2 - 3x + x^2) + c_2(6 - 7x + x^3) = 0.$$

It is easy to see that $c_1 = c_2 = 0$.

10. Find a basis for, and the dimension of, the solution set of the following system.

Solution

The second equation is two times the first, so let's ignore it. With the remaining equation, we can backsolve, using x_2 , x_3 , and x_4 as free variables.

$$x_1 = 4x_2 - 3x_3 + x_4, \quad x_2 = x_2, \quad x_3 = x_3, \quad x_4 = x_4.$$

The solution space is

$$S = \left\{ \begin{pmatrix} 4\\1\\0\\0 \end{pmatrix} x_2 + \begin{pmatrix} -3\\0\\1\\0 \end{pmatrix} x_3 + \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} x_4 \right\}.$$

A basis for the solution space is

$$B = \left\langle \begin{pmatrix} 4\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\rangle.$$

 $\dim(S) = 3.$

11. What is the dimension of each vector space (or subspace) from problems 7–9?

Solution

Problem 7: $\dim(M) = 3$ Problem 8: $\dim(M) = 3$ Problem 9: $\dim(W) = 2$