Math 236 - Assignment 5

February 21, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 28.

1. Find a basis for the row space, a basis for the column space, and the rank of the matrix A.

$$
A=\left(\begin{array}{cccc}
2 & 0 & 3 & 4 \\
0 & 1 & 1 & -1 \\
3 & 1 & 0 & 2 \\
1 & 0 & -4 & -1
\end{array}\right)
$$

2. Consider the matrix $M=\left(\begin{array}{ccc}0 & 1 & 3 \\ -1 & 0 & 1 \\ -1 & 2 & 7\end{array}\right)$.
(a) Determine whether the row $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ is in the row space of M.
(b) Find a basis for the row space of M.
(c) Find the representation for the row $\left(\begin{array}{lll}-3 & 8 & 27\end{array}\right)$ in terms of your basis.
3. Find a basis for the span of the following subset of \mathbb{R}^{3}.

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-3 \\
-3
\end{array}\right)\right\}
$$

4. Find a basis for the span of the following subset of \mathcal{P}_{3}.

$$
\left\{1+x, 1-x^{2}, 3+2 x-x^{2}\right\}
$$

5. Give an example to show that the column space of a matrix and the row space of the matrix are, in general, not the same even though they have the same dimension.
6. Suppose that $A \in M_{m \times n}$. Argue that the rank of A is less than or equal to $\min \{m, n\}$.
7. Argue that the rank of a matrix is equal to the rank of its transpose.
8. Describe all matrices that have rank 0 . Then find a general description for all matrices of rank 1.
9. Show that the space of all 3 -element row vectors (i.e., $M_{1 \times 3}$) is isomorphic to \mathbb{R}^{3}.
10. Show that the map $F: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $F\left(a x^{2}+b x+c\right)=b x^{2}-(a+c) x+a$ is an isomorphism.
11. For an arbitrary 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the determinant of A is $\operatorname{defined}$ by $\operatorname{det}(A)=$ $a d-b c$. Show that the determinant function is not an isomorphism from $M_{2 \times 2}$ into \mathbb{R}.
12. Let $B=\left\langle\overrightarrow{\beta_{1}}, \overrightarrow{\beta_{2}}, \overrightarrow{\beta_{3}}\right\rangle$ be a basis for the vector space V. For an arbitrary vector $\vec{v} \in V$, let $\operatorname{Rep}_{B}(\vec{v})$ be the representation of \vec{v} in terms of B, that is

$$
\operatorname{Rep}_{B}\left(c_{1} \overrightarrow{\beta_{1}}+c_{2} \overrightarrow{\beta_{2}}+c_{3} \overrightarrow{\beta_{3}}\right)=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Show that $\operatorname{Rep}_{B}: V \rightarrow \mathbb{R}^{3}$ is an isomorphism.

