Math 236 - Assignment 6

February 28, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due March 6.

1. Prove that a composition of isomorphisms is an isomorphism. More formally, suppose $g: U \rightarrow V$ and $f: V \rightarrow W$ are isomorphisms. Show that $f \circ g: U \rightarrow W$ is an isomorphism, where $(f \circ g)(x)$ means $f(g(x))$.

Solution

Onto: Let \vec{w} be an arbitrary vector in W. Since f is onto, there exists a vector $\vec{v} \in V$ such that $f(\vec{v})=\vec{w}$. Since g is onto, there exists a vector $\vec{u} \in U$ such that $g(\vec{u})=\vec{v}$. For this \vec{u}, we have $f(g(\vec{u}))=f(\vec{v})=\vec{w}$.

One-to-one: Suppose $f(g(\vec{u}))=f(g(\vec{v}))$. Since f is ono-to-one, we must have $g(\vec{u})=$ $g(\vec{v})$, and since g is one-to-one, we must have $\vec{u}=\vec{v}$.

Linear: $\quad f(g(\alpha \vec{x}+\beta \vec{y}))=f(\alpha g(\vec{x})+\beta g(\vec{y}))$ since g is a linear map. Furthermore,

$$
f(\alpha g(\vec{x})+\beta g(\vec{y}))=\alpha f(g(\vec{x}))+\beta f(g(\vec{y}))
$$

since f is a linear map.
2. f and g are functions from \mathbb{R}^{3} into \mathbb{R}^{2} as defined below:

$$
\left.f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\binom{0}{0}, \quad g\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\binom{1}{1} .
$$

Show that one is a homomorphism and one is not.

Solution

f is the zero map. It is a homomorphism:

$$
f\left(\alpha\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)+\beta\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right)=\binom{0}{0}=\alpha\binom{0}{0}+\beta\binom{0}{0}=\alpha f\left(\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)\right)+\beta f\left(\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right) .
$$

g is not a homomorphism:

$$
g\left(\alpha\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)+\beta\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right)=\binom{1}{1} \neq \alpha\binom{1}{1}+\beta\binom{1}{1}=\alpha g\left(\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)\right)+\beta g\left(\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right) .
$$

3. Show that $f: \mathcal{M}_{2 \times 2} \rightarrow \mathbb{R}$ is a homomorphism.

$$
f\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=2 a+3 b+c-d
$$

Solution

$$
\begin{gathered}
f\left(\alpha\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\beta\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
\alpha a_{1}+\beta a_{2} & \alpha b_{1}+\beta b_{2} \\
\alpha c_{1}+\beta c_{2} & \alpha d_{1}+\beta d_{2}
\end{array}\right)\right) \\
=2\left(\alpha a_{1}+\beta a_{2}\right)+3\left(\alpha b_{1}+\beta b_{2}\right)+\left(\alpha c_{1}+\beta c_{2}\right)-\left(\alpha d_{1}+\beta d_{2}\right) \\
=\alpha\left(2 a_{1}+3 b_{1}+c_{1}-d_{1}\right)+\beta\left(2 a_{2}+3 b_{2}+c_{2}-d_{2}\right)=\alpha f\left(\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\right)+\beta f\left(\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)\right)
\end{gathered}
$$

4. Let $d: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
d\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k}) .
$$

Show that d is a homomorphism. (The centered dot denotes the dot product from Calculus III.)

Solution
First, expand the dot product to write

$$
d\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=x+2 y-3 z
$$

Now,

$$
\begin{gathered}
d\left(\alpha\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)+\beta\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right)=d\left(\left(\begin{array}{c}
\alpha x_{1}+\beta x_{2} \\
\alpha y_{1}+\beta y_{2} \\
\alpha z_{1}+\beta z_{2}
\end{array}\right)\right) \\
=\left(\alpha x_{1}+\beta x_{2}\right)+2\left(\alpha y_{1}+\beta y_{2}\right)-3\left(\alpha z_{1}+\beta z_{2}\right)=\alpha\left(x_{1}+2 y_{1}-3 z_{1}\right)+\beta\left(x_{2}+2 y_{2}-3 z_{2}\right) \\
=\alpha d\left(\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)\right)+\beta d\left(\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)\right) .
\end{gathered}
$$

5. Assume that $h: V \rightarrow W$ is a homomorphism. The null space of h is

$$
\mathcal{N}(h)=\left\{\vec{v} \in V: h(\vec{v})=\overrightarrow{0}_{W}\right\} .
$$

Show that the null space is a subspace of V.

Solution

Let α and β be arbitrary scalars, and let \vec{x} and \vec{y} be arbitary vectors in $\mathcal{N}(h)$. It follows that $\alpha h(\vec{x})+\beta h(\vec{y})=\overrightarrow{0}_{W}$ because \vec{x} and \vec{y} are in the null space of h. Furthermore, since h is a homomorphism,

$$
\overrightarrow{0}_{W}=\alpha h(\vec{x})+\beta h(\vec{y})=h(\alpha \vec{x}+\beta \vec{y}) .
$$

Therefore, $\alpha \vec{x}+\beta \vec{y} \in \mathcal{N}(h)$.
6. Assume that $h: V \rightarrow W$ is a homomorphism. The range of h is

$$
\mathcal{R}(h)=\{\vec{w} \in W: \vec{w}=h(\vec{v}) \text { for some } \vec{v} \in V\} .
$$

Show that the range is a subspace of W.

Solution

Let α and β be arbitrary scalars, and let \vec{x} and \vec{y} be arbitary vectors in $\mathcal{R}(h)$. Because \vec{x} and \vec{y} are in the range space of h, there are vectors $\vec{u}, \vec{v} \in V$ such that

$$
h(\vec{u})=\vec{x} \quad \text { and } \quad h(\vec{v})=\vec{y} .
$$

Now since h is a homomorphism, it follows that

$$
\alpha \vec{x}+\beta \vec{y}=\alpha h(\vec{u})+\beta h(\vec{v})=h(\alpha \vec{u}+\beta \vec{v}) .
$$

Finally, since V is a vector space, $\alpha \vec{u}+\beta \vec{v} \in V$, and we see that $\alpha \vec{x}+\beta \vec{y}$ is the image under h of a vector in V. That is, $\alpha \vec{x}+\beta \vec{y} \in \mathcal{R}(h)$.
7. For the map $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
h\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\binom{x+y}{x+z}
$$

find the range space, rank, null space, and nullity.

Solution

$$
\begin{gathered}
\text { Range space }=\left\{\binom{x+y}{x+z}: x, y, z \in \mathbb{R}\right\} \\
=\left\{\binom{1}{1} x+\binom{1}{0} y+\binom{0}{1} z: x, y, z \in \mathbb{R}\right\} \\
=\operatorname{span}\left(\left\{\binom{1}{1},\binom{1}{0},\binom{0}{1}\right\}\right)=\mathbb{R}^{2}
\end{gathered}
$$

The rank of h is the dimension of the range space of h. That is 2 .

$$
\begin{gathered}
\text { Null space }=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x+y=0 \text { and } x+z=0\right\} \\
=\left\{\left(\begin{array}{c}
x \\
-x \\
-x
\end{array}\right): x \in \mathbb{R}\right\}=\left\{\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) x: x \in \mathbb{R}\right\} \\
=\operatorname{span}\left(\left\{\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)\right\}\right)
\end{gathered}
$$

The nullity of h is the dimension of the null space of h. That is 1 .
8. Suppose $h: V \rightarrow V$ is a homomorphism and that $B=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\rangle$ is a basis for V. Prove the statement: If $h\left(\vec{\beta}_{i}\right)=\overrightarrow{0}$ for each basis vector, then h is the zero map.

Solution

Let \vec{v} be an arbitrary vector in V. Since B is a basis, there exist constants $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\vec{v}=c_{1} \vec{\beta}_{1}+c_{2} \vec{\beta}_{2}+\cdots+c_{n} \vec{\beta}_{n} .
$$

Now, since h is a homomorphism and h maps each basis vector to $\overrightarrow{0}$, we have, $h(\vec{v})=h\left(c_{1} \vec{\beta}_{1}+c_{2} \vec{\beta}_{2}+\cdots+c_{n} \vec{\beta}_{n}\right)=c_{1} h\left(\vec{\beta}_{1}\right)+c_{2} h\left(\vec{\beta}_{2}\right)+\cdots+c_{n} h\left(\vec{\beta}_{n}\right)=c_{1} \overrightarrow{0}+c_{2} \overrightarrow{0}+\cdots+c_{n} \overrightarrow{0}=\overrightarrow{0}$.
In summary, we've found that $h(\vec{v})=\overrightarrow{0}$ for any vector in $\vec{v} \in V$.
9. Make up two different nontrivial homomorphisms from \mathbb{R}^{2} into \mathcal{P}_{2}. Call them f and g. Prove that $2 f+3 g$ is a homomorphism from \mathbb{R}^{2} into \mathcal{P}_{2}.

Solution

Let $f: \mathbb{R}^{2} \rightarrow \mathcal{P}_{2}$ be defined by

$$
f\left(\binom{a}{b}\right)=a+a x+b x^{2}
$$

and let $g: \mathbb{R}^{2} \rightarrow \mathcal{P}_{2}$ be defined by

$$
g\left(\binom{a}{b}\right)=b x+a x^{2}
$$

f and g are homomorphisms (details omitted).

The function $h=2 f+3 g$ has the action

$$
h\left(\binom{a}{b}\right)=2 a+(2 a+3 b) x+(2 b+3 a) x^{2}
$$

It is completely routine to show that h is a homomorphism. The details are omitted.

