Math 236 - Assignment 7

March 20, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due March 27.

1. Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right)$ be an arbitrary matrix in $\mathcal{M}_{2 \times 3}$. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(\vec{x})=A \vec{x} .
$$

Prove that f is a homomorphism.
2. Consider the homomorphism $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
h\left(\binom{x}{y}\right)=\left(\begin{array}{c}
2 x \\
x-y \\
x+3 y
\end{array}\right)
$$

Using

$$
B=\left\langle\binom{ 1}{2},\binom{-1}{1}\right\rangle \quad \text { and } \quad D=\left\langle\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)\right\rangle
$$

as bases for \mathbb{R}^{2} and \mathbb{R}^{3}, respectively, find $\operatorname{Rep}_{B, D}(h)$.
3. Consider the homomorphism $h: \mathcal{P}_{2} \rightarrow \mathcal{M}_{2 \times 2}$ defined by

$$
h\left(a x^{2}+b x+c\right)=\left(\begin{array}{cc}
c & b \\
-b & 2 a
\end{array}\right) .
$$

Using

$$
B=\left\langle 1, x+1, x^{2}+x+1\right\rangle
$$

as the basis for \mathcal{P}_{2} and D as the standard basis for $\mathcal{M}_{2 \times 2}$, find $\operatorname{Rep}_{B, D}(h)$.
4. Determine the matrix representing the zero map from \mathbb{R}^{4} to \mathbb{R}^{2}, with respect to the standard bases.
5. Write the following product as a linear combination of the columns of the matrix.

$$
\left(\begin{array}{ccc}
2 & 4 & -5 \\
0 & 8 & 6 \\
-1 & -4 & 2
\end{array}\right)\left(\begin{array}{c}
3 \\
-2 \\
5
\end{array}\right)
$$

6. Write the following product as a linear combination of the rows of the matrix.

$$
\left(\begin{array}{lll}
3 & 1 & -6
\end{array}\right)\left(\begin{array}{ccc}
7 & 3 & 2 \\
1 & 4 & -9 \\
2 & -3 & 1
\end{array}\right)
$$

7. Make up a 3×3 matrix of rank 3 , and call it A. Then make up a 3×3 matrix of rank 2 , and call it B. Compute $A B$ and find its rank.
8. A matrix is said to be upper triangular if all entries below the main diagonal are zero. For example,

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

is upper triangular. Argue that the product of two $n \times n$ upper triangular matrices is an upper triangular matrix. (You need not give a formal proof, just a compelling argument.)
9. Find the inverse of $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & 0 & 2 \\ 1 & 1 & 1\end{array}\right)$.

