Math 236 - Assignment 8

March 27, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due April 3.

1. Show that A is invertible for any θ and find A^{-1}.

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

2. For an invertible matrix A, prove that $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$.
3. Argue that the inverse of any permutation matrix is its transpose. (You need not give a formal proof, just a compelling argument.)
4. Suppose that A and B are $n \times n$ matrices. Prove that $A B=I$ if and only if $B A=$ I. (Helpful hint: From the fact that $\operatorname{rank}(A B)=\operatorname{rank}(B A)=n$, it follows that $\operatorname{rank}(A)=\operatorname{rank}(B)=n$.)
5. Find the change of basis matrix for $B, D \subseteq \mathbb{R}^{2}$.

$$
B=\left\langle\binom{-1}{1},\binom{2}{2}\right\rangle, \quad D=\left\langle\binom{ 0}{4},\binom{1}{3}\right\rangle
$$

6. Find the change of basis matrix for $B, D \subseteq \mathcal{P}_{2}$.

$$
B=\left\langle 1, x, x^{2}\right\rangle, \quad D=\left\langle x^{2}, 1, x\right\rangle
$$

7. Find bases such that this matrix represents the identity map with respect to those bases.

$$
\left(\begin{array}{ccc}
3 & 1 & 4 \\
2 & -1 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

8. Perform the Gram-Schmidt process on this basis for \mathbb{R}^{3} :

$$
\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right),\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)\right\rangle .
$$

9. Find an orthonormal basis for this subspace of \mathbb{R}^{4} :

$$
\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right): x-y-z+w=0 \text { and } x+z=0\right\} .
$$

10. What happens if we apply the Gram-Schmidt process to a finite set that is not linearly independent?
11. What happens if we apply the Gram-Schmidt process to a basis that is already orthogonal?
