Math 236 - Assignment 9

April 3, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due April 10.

1. Suppose that $B=\left\{\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\}$ is a set of nonzero mutually orthogonal vectors. Prove that the set is linearly independent.
2. Use any method to compute the determinant by hand.

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & -3 \\
4 & 5 & 1
\end{array}\right)
$$

3. Use Gaussian elimination to compute the determinant by hand.

$$
B=\left(\begin{array}{cccc}
1 & -1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
0 & 0 & 2 & 4 \\
1 & 1 & -1 & 1
\end{array}\right)
$$

4. Use Cramer's rule to solve the following system of equations.

$$
\begin{aligned}
& 2 x-5 y=7 \\
& 4 x+9 y=4
\end{aligned}
$$

5. Which real numbers x make this matrix singular?

$$
\left(\begin{array}{cc}
12-x & 4 \\
8 & 8-x
\end{array}\right)
$$

6. Which real numbers θ make this matrix singular? Explain geometrically. (Perhaps a different problem on this assignment could be useful in thinking about a geometric explanation.)

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

7. For which values of k does this system have a unique solution?

$$
\begin{aligned}
x \quad+z-w & =2 \\
y-2 z & =3 \\
x \quad & =4 \\
+k z-w & =2
\end{aligned}
$$

8. What is the determinant of each kind of elementary matrix?
9. Use the Laplace expansion to compute the determinant by hand. Expand over whichever row or column is most convenient.

$$
\left(\begin{array}{ccc}
1 & 5 & 0 \\
2 & 1 & 1 \\
3 & -1 & 0
\end{array}\right)
$$

10. Find the inverse by using the matrix adjoint.

$$
\left(\begin{array}{ccc}
1 & 4 & 3 \\
-1 & 0 & 3 \\
1 & 8 & 9
\end{array}\right)
$$

